|
|
@ -44,87 +44,16 @@ namespace ir {
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
|
|
|
|
GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)
|
|
|
|
|
|
|
|
|
|
|
|
template <typename UnaryOperation>
|
|
|
|
|
|
|
|
LoDTensor tensor_apply(const LoDTensor& vec, UnaryOperation f) {
|
|
|
|
|
|
|
|
LoDTensor vec_y;
|
|
|
|
|
|
|
|
vec_y.Resize(vec.dims());
|
|
|
|
|
|
|
|
const float* x = vec.data<float>();
|
|
|
|
|
|
|
|
float* y = vec_y.mutable_data<float>(platform::CPUPlace());
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < vec.numel(); i++) {
|
|
|
|
|
|
|
|
y[i] = f(x[i]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return vec_y;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void tensor_apply_inplace(LoDTensor* vec, float (*f)(float)) {
|
|
|
|
|
|
|
|
float* data = vec->mutable_data<float>(platform::CPUPlace());
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < vec->numel(); i++) {
|
|
|
|
|
|
|
|
data[i] = f(data[i]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename BinaryOperation>
|
|
|
|
|
|
|
|
LoDTensor tensor_apply_eltwise(const LoDTensor& vec_a, const LoDTensor& vec_b,
|
|
|
|
|
|
|
|
BinaryOperation f) {
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(vec_a.dims(), vec_b.dims());
|
|
|
|
|
|
|
|
LoDTensor vec_y;
|
|
|
|
|
|
|
|
vec_y.Resize(vec_a.dims());
|
|
|
|
|
|
|
|
const float* a = vec_a.data<float>();
|
|
|
|
|
|
|
|
const float* b = vec_b.data<float>();
|
|
|
|
|
|
|
|
float* y = vec_y.mutable_data<float>(platform::CPUPlace());
|
|
|
|
|
|
|
|
for (int64_t i = 0; i < vec_a.numel(); i++) {
|
|
|
|
|
|
|
|
y[i] = f(a[i], b[i]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return vec_y;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename BinaryOperation>
|
|
|
|
|
|
|
|
LoDTensor tensor_apply_eltwise_broadcast(const LoDTensor& vec_a,
|
|
|
|
|
|
|
|
const LoDTensor& vec_b,
|
|
|
|
|
|
|
|
BinaryOperation f) {
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(vec_a.dims().size(), 2);
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(vec_b.dims().size(), 2);
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(vec_a.dims()[0], vec_b.dims()[0]);
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(vec_b.dims()[1], 1);
|
|
|
|
|
|
|
|
LoDTensor vec_y;
|
|
|
|
|
|
|
|
vec_y.Resize(vec_a.dims());
|
|
|
|
|
|
|
|
const float* a = vec_a.data<float>();
|
|
|
|
|
|
|
|
const float* b = vec_b.data<float>();
|
|
|
|
|
|
|
|
float* y = vec_y.mutable_data<float>(platform::CPUPlace());
|
|
|
|
|
|
|
|
size_t a_height = vec_a.dims()[0];
|
|
|
|
|
|
|
|
size_t a_width = vec_a.dims()[1];
|
|
|
|
|
|
|
|
for (size_t h = 0; h < a_height; h++) {
|
|
|
|
|
|
|
|
for (size_t w = 0; w < a_width; ++w) {
|
|
|
|
|
|
|
|
*(y++) = f(*(a++), b[h]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return vec_y;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// reshape to two dimensions {A, B * C * ...}
|
|
|
|
// reshape to two dimensions {A, B * C * ...}
|
|
|
|
void make_tensor_2d(LoDTensor* tensor_to_reshape) {
|
|
|
|
DDim make_dims_2d(DDim dims) {
|
|
|
|
auto dims_count = tensor_to_reshape->dims().size();
|
|
|
|
auto dims_count = dims.size();
|
|
|
|
PADDLE_ENFORCE_GT(dims_count, 0);
|
|
|
|
PADDLE_ENFORCE_GT(dims_count, 0);
|
|
|
|
|
|
|
|
|
|
|
|
int size2 = 1;
|
|
|
|
int size2 = 1;
|
|
|
|
for (int i = 1; i < dims_count; i++) {
|
|
|
|
for (int i = 1; i < dims_count; i++) {
|
|
|
|
size2 *= tensor_to_reshape->dims()[i];
|
|
|
|
size2 *= dims[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
tensor_to_reshape->Resize(make_ddim({tensor_to_reshape->dims()[0], size2}));
|
|
|
|
return make_ddim({dims[0], size2});
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void recompute_conv_weights(LoDTensor* weights, LoDTensor* tmp) {
|
|
|
|
|
|
|
|
// remember the weights tensor shape {A, B, C, ...}
|
|
|
|
|
|
|
|
auto weights_shape = weights->dims();
|
|
|
|
|
|
|
|
// reduce the weights to 2d {A, B * C * ...}
|
|
|
|
|
|
|
|
make_tensor_2d(weights);
|
|
|
|
|
|
|
|
// make tmp tensor 2d by adding 1 as second dim {A, 1}
|
|
|
|
|
|
|
|
make_tensor_2d(tmp);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*weights =
|
|
|
|
|
|
|
|
tensor_apply_eltwise_broadcast(*weights, *tmp, std::multiplies<float>());
|
|
|
|
|
|
|
|
// reshape weights to the original dims {A, B, C, ...}
|
|
|
|
|
|
|
|
weights->Resize(weights_shape);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void recompute_bias_and_weights(const Scope* scope,
|
|
|
|
void recompute_bias_and_weights(const Scope* scope,
|
|
|
@ -135,6 +64,13 @@ void recompute_bias_and_weights(const Scope* scope,
|
|
|
|
const ir::Node& bn_variance, //
|
|
|
|
const ir::Node& bn_variance, //
|
|
|
|
LoDTensor* eltwise_y_in_tensor, //
|
|
|
|
LoDTensor* eltwise_y_in_tensor, //
|
|
|
|
float epsilon) {
|
|
|
|
float epsilon) {
|
|
|
|
|
|
|
|
using EigenVectorArrayMap =
|
|
|
|
|
|
|
|
Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
|
|
|
|
|
|
|
|
using ConstEigenVectorArrayMap =
|
|
|
|
|
|
|
|
Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
|
|
|
|
|
|
|
|
using EigenMatrixArrayMap = Eigen::Map<
|
|
|
|
|
|
|
|
Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;
|
|
|
|
|
|
|
|
|
|
|
|
// Re-compute bias of conv2d from BN
|
|
|
|
// Re-compute bias of conv2d from BN
|
|
|
|
PADDLE_ENFORCE_EQ(eltwise_y_in_tensor->dims(), bn_bias_tensor.dims());
|
|
|
|
PADDLE_ENFORCE_EQ(eltwise_y_in_tensor->dims(), bn_bias_tensor.dims());
|
|
|
|
|
|
|
|
|
|
|
@ -143,31 +79,38 @@ void recompute_bias_and_weights(const Scope* scope,
|
|
|
|
scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
|
|
|
|
scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
|
|
|
|
auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();
|
|
|
|
auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();
|
|
|
|
|
|
|
|
|
|
|
|
auto std_tensor = LoDTensor();
|
|
|
|
ConstEigenVectorArrayMap scale_array(scale_tensor->data<float>(),
|
|
|
|
std_tensor.Resize(bn_bias_tensor.dims());
|
|
|
|
scale_tensor->numel(), 1);
|
|
|
|
std_tensor =
|
|
|
|
EigenVectorArrayMap variance_array(
|
|
|
|
tensor_apply(*variance_tensor, [&](float x) { return x + epsilon; });
|
|
|
|
variance_tensor->mutable_data<float>(platform::CPUPlace()),
|
|
|
|
|
|
|
|
variance_tensor->numel(), 1);
|
|
|
|
|
|
|
|
ConstEigenVectorArrayMap mean_array(mean_tensor->data<float>(),
|
|
|
|
|
|
|
|
mean_tensor->numel(), 1);
|
|
|
|
|
|
|
|
ConstEigenVectorArrayMap bn_bias_array(bn_bias_tensor.data<float>(),
|
|
|
|
|
|
|
|
bn_bias_tensor.numel(), 1);
|
|
|
|
|
|
|
|
|
|
|
|
using EigenVectorArrayMap =
|
|
|
|
// variance will not be used anymore, so make it std_array and then tmp_array
|
|
|
|
Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
|
|
|
|
variance_array += epsilon;
|
|
|
|
|
|
|
|
variance_array = variance_array.sqrt();
|
|
|
|
|
|
|
|
variance_array = scale_array / variance_array;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EigenVectorArrayMap eltwise_y_in_array(
|
|
|
|
|
|
|
|
eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
|
|
|
|
|
|
|
|
eltwise_y_in_tensor->numel(), 1);
|
|
|
|
|
|
|
|
|
|
|
|
EigenVectorArrayMap std_vec(
|
|
|
|
eltwise_y_in_array =
|
|
|
|
std_tensor.mutable_data<float>(platform::CPUPlace()), std_tensor.numel(),
|
|
|
|
((eltwise_y_in_array - mean_array) * variance_array) + bn_bias_array;
|
|
|
|
1);
|
|
|
|
|
|
|
|
std_vec = std_vec.sqrt();
|
|
|
|
|
|
|
|
auto tmp_tensor =
|
|
|
|
|
|
|
|
tensor_apply_eltwise(*scale_tensor, std_tensor, std::divides<float>());
|
|
|
|
|
|
|
|
auto tensor_minus = tensor_apply_eltwise(*eltwise_y_in_tensor, *mean_tensor,
|
|
|
|
|
|
|
|
std::minus<float>());
|
|
|
|
|
|
|
|
auto tensor_mul =
|
|
|
|
|
|
|
|
tensor_apply_eltwise(tensor_minus, tmp_tensor, std::multiplies<float>());
|
|
|
|
|
|
|
|
*eltwise_y_in_tensor =
|
|
|
|
|
|
|
|
tensor_apply_eltwise(tensor_mul, bn_bias_tensor, std::plus<float>());
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Re-compute weight of conv2d from BN
|
|
|
|
// Re-compute weight of conv2d from BN
|
|
|
|
auto* current_param =
|
|
|
|
auto* weights = scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
|
|
|
|
scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
|
|
|
|
auto weights_shape = weights->dims();
|
|
|
|
recompute_conv_weights(current_param, &tmp_tensor);
|
|
|
|
auto weights_shape_2d = make_dims_2d(weights_shape);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EigenMatrixArrayMap weights_array_2d(
|
|
|
|
|
|
|
|
weights->mutable_data<float>(platform::CPUPlace()), weights_shape_2d[0],
|
|
|
|
|
|
|
|
weights_shape_2d[1]);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
weights_array_2d.colwise() *= variance_array;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl(
|
|
|
|
std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl(
|
|
|
|