commit
561d6340a4
@ -0,0 +1,136 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/expand_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::Tensor;
|
||||
|
||||
class ExpandOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null.");
|
||||
|
||||
std::vector<int> expand_times =
|
||||
ctx->Attrs().Get<std::vector<int>>("expand_times");
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
|
||||
PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims.size()), expand_times.size(),
|
||||
"The number of Attr(expand_times)'s value must be equal "
|
||||
"to the rank of Input(X).");
|
||||
PADDLE_ENFORCE_LE(x_dims.size(), 6,
|
||||
"The rank of Input(X) must not be greater than 6.");
|
||||
|
||||
std::vector<int64_t> out_shape(x_dims.size());
|
||||
for (size_t i = 0; i < expand_times.size(); ++i) {
|
||||
PADDLE_ENFORCE_GE(expand_times[i], 1,
|
||||
"Each value of Attr(expand_times) should not be "
|
||||
"less than 1.");
|
||||
out_shape[i] = x_dims[i] * expand_times[i];
|
||||
}
|
||||
|
||||
ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
|
||||
if (out_shape[0] == x_dims[0]) {
|
||||
ctx->ShareLoD("X", "Out");
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class ExpandOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
ExpandOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X",
|
||||
"(Tensor, default Tensor<float>) A tensor with rank in [1, 6]."
|
||||
"X is the input tensor to be expanded.");
|
||||
AddOutput("Out",
|
||||
"(Tensor, default Tensor<float>) A tensor with rank in [1, 6]."
|
||||
"The rank of Output(Out) is same as Input(X) except that each "
|
||||
"dimension size of Output(Out) is equal to corresponding "
|
||||
"dimension size of Input(X) multiplying corresponding value of "
|
||||
"Attr(expand_times).");
|
||||
AddAttr<std::vector<int>>("expand_times",
|
||||
"Expand times number for each dimension.");
|
||||
AddComment(R"DOC(
|
||||
Expand operator tiles the input by given times number. You should set times
|
||||
number for each dimension by providing attribute 'expand_times'. The rank of X
|
||||
should be in [1, 6]. Please notice that size of 'expand_times' must be same with
|
||||
X's rank. Following is a using case:
|
||||
|
||||
Input(X) is a 3-D tensor with shape [2, 3, 1]:
|
||||
|
||||
[
|
||||
[[1], [2], [3]],
|
||||
[[4], [5], [6]]
|
||||
]
|
||||
|
||||
Attr(expand_times): [1, 2, 2]
|
||||
|
||||
Output(Out) is a 3-D tensor with shape [2, 6, 2]:
|
||||
|
||||
[
|
||||
[[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
|
||||
[[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
|
||||
]
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class ExpandGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) should not be null.");
|
||||
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
std::vector<int> expand_times =
|
||||
ctx->Attrs().Get<std::vector<int>>("expand_times");
|
||||
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
||||
|
||||
for (size_t i = 0; i < expand_times.size(); ++i) {
|
||||
PADDLE_ENFORCE_EQ(x_dims[i] * expand_times[i], out_dims[i],
|
||||
"Each dimension size of Input(Out@GRAD) should be "
|
||||
"equal to multiplication of crroresponding dimension "
|
||||
"size of Input(X) and Attr(expand_times) value.");
|
||||
}
|
||||
|
||||
auto x_grad_name = framework::GradVarName("X");
|
||||
|
||||
if (ctx->HasOutput(x_grad_name)) {
|
||||
ctx->SetOutputDim(x_grad_name, x_dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(expand, ops::ExpandOp, ops::ExpandOpMaker, expand_grad,
|
||||
ops::ExpandGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(expand,
|
||||
ops::ExpandKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
expand_grad, ops::ExpandGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,23 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include "paddle/operators/expand_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(expand,
|
||||
ops::ExpandKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
expand_grad, ops::ExpandGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,172 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
You may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <boost/preprocessor/arithmetic/div.hpp>
|
||||
#include <boost/preprocessor/arithmetic/mod.hpp>
|
||||
#include <boost/preprocessor/comparison/greater.hpp>
|
||||
#include <boost/preprocessor/comparison/greater_equal.hpp>
|
||||
#include <boost/preprocessor/control/if.hpp>
|
||||
#include <boost/preprocessor/repetition/repeat.hpp>
|
||||
#include <iostream>
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/framework/operator.h"
|
||||
|
||||
#define MAX_RANK_SUPPORTED 6
|
||||
|
||||
#define EXPAND_TEMPLATE(z, n, data) \
|
||||
case n + 1: { \
|
||||
Expand<n + 1>(context); \
|
||||
break; \
|
||||
}
|
||||
#define REP_EXPAND_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_TEMPLATE, ~)
|
||||
#define COND(n) \
|
||||
BOOST_PP_GREATER_EQUAL(BOOST_PP_DIV(n, MAX_RANK_SUPPORTED), \
|
||||
BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
|
||||
#define EXPAND_GRAD_CASE(n) \
|
||||
case n: { \
|
||||
ExpandBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
|
||||
break; \
|
||||
}
|
||||
#define EXPAND_GRAD_TEMPLATE(z, n, data) \
|
||||
BOOST_PP_IF(COND(n), EXPAND_GRAD_CASE(n), )
|
||||
#define REP_EXPAND_GRAD_TEMPLATE(n) BOOST_PP_REPEAT(n, EXPAND_GRAD_TEMPLATE, ~)
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
||||
|
||||
template <typename Place, typename T>
|
||||
class ExpandKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto rank = context.Input<Tensor>("X")->dims().size();
|
||||
switch (rank) {
|
||||
REP_EXPAND_TEMPLATE(MAX_RANK_SUPPORTED)
|
||||
default:
|
||||
PADDLE_ENFORCE(false,
|
||||
"Only support tensor with rank being between 1 and 6.");
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
template <int Rank>
|
||||
void Expand(const framework::ExecutionContext& context) const {
|
||||
auto* in0 = context.Input<Tensor>("X");
|
||||
auto& expand_times = context.Attr<std::vector<int>>("expand_times");
|
||||
auto* out0 = context.Output<Tensor>("Out");
|
||||
Eigen::DSizes<int, Rank> bcast_dims;
|
||||
auto x_dims = in0->dims();
|
||||
for (size_t i = 0; i < expand_times.size(); ++i) {
|
||||
bcast_dims[i] = expand_times[i];
|
||||
}
|
||||
auto x = EigenTensor<T, Rank>::From(*in0);
|
||||
out0->mutable_data<T>(context.GetPlace());
|
||||
auto y = EigenTensor<T, Rank>::From(*out0);
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
y.device(place) = x.broadcast(bcast_dims);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class ExpandGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* in0 = context.Input<Tensor>("X");
|
||||
auto& expand_times = context.Attr<std::vector<int>>("expand_times");
|
||||
auto x_dims = in0->dims();
|
||||
// 1. reshape_dims_vec is the broadcast parameter. For each dimension i,
|
||||
// if expand_times[i] > 1 and x_dims[i] > 1, i will be splitted to two
|
||||
// dimensions [expand_times[i], x_dims[i]].
|
||||
// 2. reduce_dims_vec is the dimension parameter to compute gradients. For
|
||||
// each dimension expanded, the gradients should be summed to original
|
||||
// size.
|
||||
std::vector<int> reshape_dims_vec;
|
||||
std::vector<int> reduce_dims_vec;
|
||||
for (size_t i = 0; i < expand_times.size(); ++i) {
|
||||
if (expand_times[i] == 1) {
|
||||
reshape_dims_vec.push_back(x_dims[i]);
|
||||
} else {
|
||||
if (x_dims[i] == 1) {
|
||||
reduce_dims_vec.push_back(reshape_dims_vec.size());
|
||||
reshape_dims_vec.push_back(expand_times[i]);
|
||||
} else {
|
||||
reduce_dims_vec.push_back(reshape_dims_vec.size());
|
||||
reshape_dims_vec.push_back(expand_times[i]);
|
||||
reshape_dims_vec.push_back(x_dims[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int dims = reshape_dims_vec.size() * MAX_RANK_SUPPORTED +
|
||||
reduce_dims_vec.size() - MAX_RANK_SUPPORTED - 1;
|
||||
// no need reduce, just copy
|
||||
if (reduce_dims_vec.size() == 0) {
|
||||
auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
out0->mutable_data<T>(context.GetPlace());
|
||||
out0->CopyFrom(*in0, context.GetPlace(), context.device_context());
|
||||
} else {
|
||||
switch (dims) {
|
||||
REP_EXPAND_GRAD_TEMPLATE(72)
|
||||
default:
|
||||
PADDLE_ENFORCE(
|
||||
false, "Only support tensor with rank being between 1 and 6.");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
template <int Dims>
|
||||
void ExpandBackward(const framework::ExecutionContext& context,
|
||||
const std::vector<int>& reshape_dims_vec,
|
||||
const std::vector<int>& reduce_dims_vec) const {
|
||||
size_t reshape_size = Dims / MAX_RANK_SUPPORTED + 1;
|
||||
size_t reduce_size = Dims % MAX_RANK_SUPPORTED + 1;
|
||||
PADDLE_ENFORCE_EQ(reshape_size, reshape_dims_vec.size(),
|
||||
"Inconsistent size between template Dims and "
|
||||
"reshape dimensions.");
|
||||
PADDLE_ENFORCE_EQ(reduce_size, reduce_dims_vec.size(),
|
||||
"Inconsistent size between template Dims and "
|
||||
"reduce dimensions.");
|
||||
auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
auto x = EigenVector<T>::Flatten(*(context.Input<Tensor>("X")));
|
||||
out0->mutable_data<T>(context.GetPlace());
|
||||
auto x_grad = EigenVector<T>::Flatten(*out0);
|
||||
Eigen::DSizes<int, Dims / MAX_RANK_SUPPORTED + 1> reshape_dims;
|
||||
for (size_t i = 0; i < reshape_size; ++i) {
|
||||
reshape_dims[i] = reshape_dims_vec[i];
|
||||
}
|
||||
Eigen::DSizes<int, Dims % MAX_RANK_SUPPORTED + 1> reduce_dims;
|
||||
for (size_t i = 0; i < reduce_size; ++i) {
|
||||
reduce_dims[i] = reduce_dims_vec[i];
|
||||
}
|
||||
auto out_grad = EigenVector<T>::Flatten(*in0);
|
||||
x_grad.device(context.GetEigenDevice<Place>()) =
|
||||
out_grad.reshape(reshape_dims).sum(reduce_dims).reshape(x.dimensions());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,97 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestExpandOpRank1(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand"
|
||||
self.inputs = {'X': np.random.random(12).astype("float32")}
|
||||
self.attrs = {'expand_times': [2]}
|
||||
output = np.tile(self.inputs['X'], 2)
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestExpandOpRank2_Corner(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand"
|
||||
self.inputs = {'X': np.random.random((12, 14)).astype("float32")}
|
||||
self.attrs = {'expand_times': [1, 1]}
|
||||
output = np.tile(self.inputs['X'], (1, 1))
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestExpandOpRank2(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand"
|
||||
self.inputs = {'X': np.random.random((12, 14)).astype("float32")}
|
||||
self.attrs = {'expand_times': [2, 3]}
|
||||
output = np.tile(self.inputs['X'], (2, 3))
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestExpandOpRank3_Corner(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand"
|
||||
self.inputs = {'X': np.random.random((2, 4, 5)).astype("float32")}
|
||||
self.attrs = {'expand_times': [1, 1, 1]}
|
||||
output = np.tile(self.inputs['X'], (1, 1, 1))
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestExpandOpRank3(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand"
|
||||
self.inputs = {'X': np.random.random((2, 4, 5)).astype("float32")}
|
||||
self.attrs = {'expand_times': [2, 1, 4]}
|
||||
output = np.tile(self.inputs['X'], (2, 1, 4))
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
class TestExpandOpRank4(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "expand"
|
||||
self.inputs = {'X': np.random.random((2, 4, 5, 7)).astype("float32")}
|
||||
self.attrs = {'expand_times': [3, 2, 1, 2]}
|
||||
output = np.tile(self.inputs['X'], (3, 2, 1, 2))
|
||||
self.outputs = {'Out': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue