|
|
|
@ -11,7 +11,6 @@
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
|
|
|
|
|
import sys
|
|
|
|
|
import logging
|
|
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
@ -26,37 +25,21 @@ from ..base.fleet_base import DistributedOptimizer
|
|
|
|
|
class Collective(Fleet):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super(Collective, self).__init__(Mode.COLLECTIVE)
|
|
|
|
|
self.local_ip_ = 0
|
|
|
|
|
self._local_ip = 0
|
|
|
|
|
|
|
|
|
|
def init(self, role_maker=None):
|
|
|
|
|
"""
|
|
|
|
|
should be called only once in user's python scripts,
|
|
|
|
|
init() will initialize RoleMaker which is used for identifying
|
|
|
|
|
current node's role, e.g. worker, server, etc.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
role_maker(RoleMakerBase): subclass of RoleMakerBase.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
None
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
super(Collective, self).init(role_maker)
|
|
|
|
|
self._role_maker._generate_role()
|
|
|
|
|
|
|
|
|
|
def init_worker(self, executor):
|
|
|
|
|
def init_worker(self):
|
|
|
|
|
logging.warn(
|
|
|
|
|
"You should not call 'init_worker' method for collective mode.")
|
|
|
|
|
|
|
|
|
|
def run_worker(self, executor, main_program=None):
|
|
|
|
|
def run_worker(self, main_programs=None, scopes=None):
|
|
|
|
|
logging.warn(
|
|
|
|
|
"You should not call 'run_worker' method for collective mode.")
|
|
|
|
|
|
|
|
|
|
def init_server(self, executor, model_dir=None):
|
|
|
|
|
def init_server(self, model_dir=None):
|
|
|
|
|
logging.warn(
|
|
|
|
|
"You should not call 'init_server' method for collective mode.")
|
|
|
|
|
|
|
|
|
|
def run_server(self, executor):
|
|
|
|
|
def run_server(self):
|
|
|
|
|
logging.warn(
|
|
|
|
|
"You should not call 'run_server' method for collective mode.")
|
|
|
|
|
|
|
|
|
@ -64,29 +47,28 @@ class Collective(Fleet):
|
|
|
|
|
logging.warn(
|
|
|
|
|
"You should not call 'stop_worker' method for collective mode.")
|
|
|
|
|
|
|
|
|
|
def stop(self, executor):
|
|
|
|
|
def stop(self):
|
|
|
|
|
"""
|
|
|
|
|
stop(): will be called after a user finishes his/her training task.
|
|
|
|
|
"""
|
|
|
|
|
logging.warn("You should not call 'stop' method for collective mode.")
|
|
|
|
|
|
|
|
|
|
def distributed_optimizer(self, optimizer, strategy=None):
|
|
|
|
|
self.optimizer = CollectiveOptimizer(optimizer, strategy)
|
|
|
|
|
return self.optimizer
|
|
|
|
|
self._optimizer = CollectiveOptimizer(optimizer, strategy)
|
|
|
|
|
return self._optimizer
|
|
|
|
|
|
|
|
|
|
def save_inference_model(self,
|
|
|
|
|
executor,
|
|
|
|
|
dirname,
|
|
|
|
|
feeded_var_names=None,
|
|
|
|
|
target_vars=None,
|
|
|
|
|
main_program=None,
|
|
|
|
|
export_for_deployment=True):
|
|
|
|
|
io.save_inference_model(dirname, feeded_var_names, target_vars,
|
|
|
|
|
executor, main_program, None, None,
|
|
|
|
|
self._executor, main_program, None, None,
|
|
|
|
|
export_for_deployment)
|
|
|
|
|
|
|
|
|
|
def save_persistables(self, executor, dirname, main_program=None):
|
|
|
|
|
io.save_persistables(executor, dirname, main_program, None)
|
|
|
|
|
def save_persistables(self, dirname, main_program=None):
|
|
|
|
|
io.save_persistables(self._executor, dirname, main_program, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fleet = Collective()
|
|
|
|
@ -143,9 +125,9 @@ class CollectiveOptimizer(DistributedOptimizer):
|
|
|
|
|
optimize_ops, param_grads = self._optimizer.minimize(
|
|
|
|
|
loss, startup_program, parameter_list, no_grad_set)
|
|
|
|
|
|
|
|
|
|
worker_endpoints = fleet.worker_endpoints
|
|
|
|
|
trainer_id = fleet.current_id
|
|
|
|
|
current_endpoint = fleet.current_endpoint
|
|
|
|
|
worker_endpoints = fleet.worker_endpoints()
|
|
|
|
|
trainer_id = fleet.worker_index()
|
|
|
|
|
current_endpoint = fleet.worker_endpoints()[trainer_id]
|
|
|
|
|
|
|
|
|
|
startup_program = startup_program if startup_program else \
|
|
|
|
|
fluid.framework.default_startup_program
|
|
|
|
|