|
|
|
@ -674,7 +674,8 @@ def max_pool2d(x,
|
|
|
|
|
return_mask=True)
|
|
|
|
|
# out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
|
|
|
|
|
"""
|
|
|
|
|
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool2d')
|
|
|
|
|
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
|
|
|
|
|
'max_pool2d')
|
|
|
|
|
kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
|
|
|
|
|
if stride is None:
|
|
|
|
|
stride = kernel_size
|
|
|
|
@ -911,7 +912,8 @@ def adaptive_avg_pool1d(x, output_size, name=None):
|
|
|
|
|
# pool_out shape: [1, 3, 16])
|
|
|
|
|
"""
|
|
|
|
|
pool_type = 'avg'
|
|
|
|
|
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'adaptive_pool2d')
|
|
|
|
|
check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
|
|
|
|
|
'adaptive_pool2d')
|
|
|
|
|
_check_input(x, 3)
|
|
|
|
|
check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
|
|
|
|
|
|
|
|
|
|