Add `paddle.nn.loss.CrossEntropyLoss` op (#23669)
* add cross_entropy_loss,test=develop * fix some commnet,test=developrevert-23830-2.0-beta
parent
0a878be817
commit
588eb8e2ea
@ -0,0 +1,136 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
import unittest
|
||||
|
||||
|
||||
class CrossEntropyLoss(unittest.TestCase):
|
||||
def test_cross_entropy_loss_mean(self):
|
||||
input_np = np.random.random([5, 100]).astype(np.float32)
|
||||
label_np = np.random.random([5, 1]).astype(np.int64)
|
||||
weight_np = np.random.random([100]).astype(np.float32)
|
||||
prog = fluid.Program()
|
||||
startup_prog = fluid.Program()
|
||||
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
with fluid.program_guard(prog, startup_prog):
|
||||
input = fluid.layers.data(
|
||||
name='input', shape=[5, 100], dtype='float32')
|
||||
label = fluid.layers.data(name='label', shape=[5, 1], dtype='int64')
|
||||
weight = fluid.layers.data(
|
||||
name='weight', shape=[100], dtype='float32')
|
||||
cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight)
|
||||
ret = cross_entropy_loss(input, label)
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
static_ret = exe.run(prog,
|
||||
feed={
|
||||
'input': input_np,
|
||||
'label': label_np,
|
||||
"weight": weight_np
|
||||
},
|
||||
fetch_list=[ret])
|
||||
self.assertIsNotNone(static_ret)
|
||||
with fluid.dygraph.guard():
|
||||
cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
|
||||
weight=fluid.dygraph.to_variable(weight_np))
|
||||
dy_ret = cross_entropy_loss(
|
||||
fluid.dygraph.to_variable(input_np),
|
||||
fluid.dygraph.to_variable(label_np))
|
||||
dy_ret_value = dy_ret.numpy()
|
||||
self.assertIsNotNone(dy_ret_value)
|
||||
self.assertTrue(np.allclose(static_ret, dy_ret_value))
|
||||
|
||||
def test_cross_entropy_loss_sum(self):
|
||||
input_np = np.random.random([5, 100]).astype(np.float32)
|
||||
label_np = np.random.random([5, 1]).astype(np.int64)
|
||||
weight_np = np.random.random([100]).astype(np.float32)
|
||||
prog = fluid.Program()
|
||||
startup_prog = fluid.Program()
|
||||
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
with fluid.program_guard(prog, startup_prog):
|
||||
input = fluid.layers.data(
|
||||
name='input', shape=[5, 100], dtype='float32')
|
||||
label = fluid.layers.data(name='label', shape=[5, 1], dtype='int64')
|
||||
weight = fluid.layers.data(
|
||||
name='weight', shape=[100], dtype='float32')
|
||||
cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
|
||||
weight=weight, reduction='sum')
|
||||
ret = cross_entropy_loss(input, label)
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
static_ret = exe.run(prog,
|
||||
feed={
|
||||
'input': input_np,
|
||||
'label': label_np,
|
||||
"weight": weight_np
|
||||
},
|
||||
fetch_list=[ret])
|
||||
self.assertIsNotNone(static_ret)
|
||||
with fluid.dygraph.guard():
|
||||
cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
|
||||
weight=fluid.dygraph.to_variable(weight_np), reduction='sum')
|
||||
dy_ret = cross_entropy_loss(
|
||||
fluid.dygraph.to_variable(input_np),
|
||||
fluid.dygraph.to_variable(label_np))
|
||||
dy_ret_value = dy_ret.numpy()
|
||||
self.assertIsNotNone(dy_ret_value)
|
||||
self.assertTrue(np.allclose(static_ret, dy_ret_value))
|
||||
|
||||
def test_cross_entropy_loss_none(self):
|
||||
input_np = np.random.random([5, 100]).astype(np.float32)
|
||||
label_np = np.random.random([5, 1]).astype(np.int64)
|
||||
weight_np = np.random.random([100]).astype(np.float32)
|
||||
prog = fluid.Program()
|
||||
startup_prog = fluid.Program()
|
||||
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
with fluid.program_guard(prog, startup_prog):
|
||||
input = fluid.layers.data(
|
||||
name='input', shape=[5, 100], dtype='float32')
|
||||
label = fluid.layers.data(name='label', shape=[5, 1], dtype='int64')
|
||||
weight = fluid.layers.data(
|
||||
name='weight', shape=[100], dtype='float32')
|
||||
cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
|
||||
weight=weight, reduction='none')
|
||||
ret = cross_entropy_loss(input, label)
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
static_ret = exe.run(prog,
|
||||
feed={
|
||||
'input': input_np,
|
||||
'label': label_np,
|
||||
"weight": weight_np
|
||||
},
|
||||
fetch_list=[ret])
|
||||
self.assertIsNotNone(static_ret)
|
||||
with fluid.dygraph.guard():
|
||||
cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
|
||||
weight=fluid.dygraph.to_variable(weight_np), reduction='none')
|
||||
dy_ret = cross_entropy_loss(
|
||||
fluid.dygraph.to_variable(input_np),
|
||||
fluid.dygraph.to_variable(label_np))
|
||||
dy_ret_value = dy_ret.numpy()
|
||||
self.assertIsNotNone(dy_ret_value)
|
||||
self.assertTrue(np.allclose(static_ret, dy_ret_value))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue