parent
4c7a9a4a56
commit
58b5b08bba
@ -0,0 +1,78 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/prelu_op.h"
|
||||||
|
#include "paddle/operators/net_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class PreluOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
PreluOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||||||
|
const framework::VariableNameMap &outputs,
|
||||||
|
const framework::AttributeMap &attrs)
|
||||||
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
auto *in = ctx.Input<framework::Tensor>("X");
|
||||||
|
auto *out = ctx.Output<framework::LoDTensor>("Out");
|
||||||
|
out->Resize(in->dims());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename AttrType>
|
||||||
|
class PreluOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
PreluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X", "The input tensor of prelu operator.").NotInGradient();
|
||||||
|
AddOutput("Out", "The output tensor of prelu operator.").NotInGradient();
|
||||||
|
AddComment(R"DOC(Prelu operator
|
||||||
|
|
||||||
|
The equation is:
|
||||||
|
f(x) = alpha * x , for x < 0
|
||||||
|
f(x) = x , for x >= 0
|
||||||
|
)DOC");
|
||||||
|
AddAttr<AttrType>("alpha", "The scaling factor alpha of prelu.")
|
||||||
|
.SetDefault(0.0);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// The operator to calculate gradients of a prelu operator.
|
||||||
|
class PreluGradOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
auto X_grad = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
||||||
|
auto X = ctx.Input<Tensor>("X");
|
||||||
|
|
||||||
|
X_grad->Resize(X->dims());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP(prelu, ops::PreluOp, ops::PreluOpMaker<float>, prelu_grad,
|
||||||
|
ops::PreluGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(prelu,
|
||||||
|
ops::PreluKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(prelu_grad,
|
||||||
|
ops::PreluGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,18 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/prelu_op.h"
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
prelu, paddle::operators::PreluKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,71 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||||
|
|
||||||
|
template <typename Place, typename T, typename AttrType = T>
|
||||||
|
class PreluKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* X = context.Input<Tensor>("X");
|
||||||
|
auto* Out = context.Output<Tensor>("Out");
|
||||||
|
|
||||||
|
Out->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
auto alpha = static_cast<T>(context.Attr<AttrType>("alpha"));
|
||||||
|
|
||||||
|
auto X_vec = EigenVector<T>::Flatten(*X);
|
||||||
|
auto Out_vec = EigenVector<T>::Flatten(*Out);
|
||||||
|
|
||||||
|
auto place = context.GetEigenDevice<Place>();
|
||||||
|
|
||||||
|
Out_vec.device(place) = X_vec.cwiseMax(0.f) + X_vec.cwiseMin(0.f) * alpha;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T, typename AttrType = T>
|
||||||
|
class PreluGradKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* dX = context.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
auto* dO = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
|
||||||
|
auto* Out = context.Output<Tensor>("Out");
|
||||||
|
|
||||||
|
auto alpha = static_cast<T>(context.Attr<AttrType>("alpha"));
|
||||||
|
|
||||||
|
dX->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
for (int i = 0; i < dX->numel(); ++i) {
|
||||||
|
if (Out->data<T>()[i] > 0) {
|
||||||
|
dX->data<T>()[i] = dO->data<T>()[i];
|
||||||
|
} else {
|
||||||
|
dX->data<T>()[i] = dO->data<T>()[i] * alpha;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,23 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class ScaleTest(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "prelu"
|
||||||
|
self.inputs = {'X': np.random.random((10, 10)).astype("float32")}
|
||||||
|
self.attrs = {'alpha': 0.1}
|
||||||
|
out_np = np.maximum(self.inputs['X'], 0.)
|
||||||
|
out_np = out_np + np.minimum(self.inputs['X'], 0.) * self.attrs['alpha']
|
||||||
|
self.outputs = {'Out': self.inputs['X'] * self.attrs['scale']}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(['X'], 'Out')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue