Added LSTM BF16 and fixed GRU BF16 (#31234)
parent
7cdf6ea770
commit
5b4f8aac82
@ -0,0 +1,159 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import struct
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.tests.unittests.op_test import OpTest, convert_float_to_uint16, convert_uint16_to_float
|
||||
from paddle.fluid.tests.unittests.test_fusion_lstm_op import TestFusionLSTMOp, fc, ACTIVATION, fusion_lstm
|
||||
from paddle.fluid.tests.unittests.test_fusion_gru_op import fusion_gru
|
||||
|
||||
|
||||
@unittest.skipIf(not core.supports_bfloat16(),
|
||||
"place does not support BF16 evaluation")
|
||||
class TestFusionLSTMBF16ONEDNNOp(OpTest):
|
||||
def set_confs(self):
|
||||
self.mkldnn_data_type = False
|
||||
|
||||
def test_check_output(self):
|
||||
for use_seq in {True, False}:
|
||||
self.attrs['use_seq'] = use_seq
|
||||
self.check_output(check_dygraph=False, no_check_set=["Cell"])
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = 'fusion_lstm'
|
||||
self.lod = [[2, 3, 5, 4]]
|
||||
self.M = 8
|
||||
self.D = 16
|
||||
self.has_initial_state = False
|
||||
self.use_peepholes = False
|
||||
self.is_reverse = False
|
||||
self._cpu_only = True
|
||||
self.act_gate = 'sigmoid'
|
||||
self.act_cell = 'tanh'
|
||||
self.act_cand = 'tanh'
|
||||
self.use_mkldnn = True
|
||||
self.force_fp32_output = False
|
||||
self.weights_dtype = 'fp32'
|
||||
self.set_confs()
|
||||
|
||||
T = sum(self.lod[0])
|
||||
bs = len(self.lod[0])
|
||||
|
||||
# fp32 X input for reference implementation and
|
||||
# corressponding bf16 data as input to LSTM oneDNN bf16 kernel
|
||||
x = np.random.normal(size=(T, self.M)).astype('float32')
|
||||
|
||||
x_bf16 = convert_float_to_uint16(x)
|
||||
|
||||
if self.has_initial_state:
|
||||
h0 = np.random.normal(size=(bs, self.D)).astype('float32')
|
||||
c0 = np.random.normal(size=(bs, self.D)).astype('float32')
|
||||
else:
|
||||
h0 = np.zeros((bs, self.D)).astype('float32')
|
||||
c0 = np.zeros((bs, self.D)).astype('float32')
|
||||
|
||||
wh = np.random.normal(size=(self.D, 4 * self.D)).astype('float32')
|
||||
|
||||
h0_bf16 = convert_float_to_uint16(h0)
|
||||
|
||||
if self.use_peepholes:
|
||||
b = np.random.normal(size=(1, 7 * self.D)).astype('float32')
|
||||
else:
|
||||
b = np.random.normal(size=(1, 4 * self.D)).astype('float32')
|
||||
w_b = np.copy(b[:, 0:4 * self.D])
|
||||
w_c = b[:, 4 * self.D:] if self.use_peepholes else None
|
||||
|
||||
wx = np.random.normal(size=(self.M, 4 * self.D)).astype('float32')
|
||||
|
||||
wx_bf16 = convert_float_to_uint16(wx)
|
||||
wh_bf16 = convert_float_to_uint16(wh)
|
||||
|
||||
bx = np.random.normal(size=(1, 4 * self.D)).astype('float32')
|
||||
b[0, 0:4 * self.D] += bx[0, :]
|
||||
|
||||
hidden, c = fusion_lstm(x, self.lod, wx, bx, h0, c0, wh, w_b, w_c,
|
||||
self.is_reverse, ACTIVATION[self.act_gate],
|
||||
ACTIVATION[self.act_cell],
|
||||
ACTIVATION[self.act_cand])
|
||||
|
||||
hidden = hidden.astype('float32')
|
||||
hidden_bf16 = convert_float_to_uint16(hidden)
|
||||
|
||||
if self.weights_dtype == 'bf16':
|
||||
self.inputs = {
|
||||
'X': (x_bf16, self.lod),
|
||||
'WeightX': wx_bf16,
|
||||
'WeightH': wh_bf16,
|
||||
'Bias': b
|
||||
}
|
||||
elif self.weights_dtype == 'fp32':
|
||||
self.inputs = {
|
||||
'X': (x_bf16, self.lod),
|
||||
'WeightX': wx,
|
||||
'WeightH': wh,
|
||||
'Bias': b
|
||||
}
|
||||
|
||||
if self.has_initial_state:
|
||||
if self.weights_dtype == 'bf16':
|
||||
self.inputs['H0'] = h0_bf16
|
||||
elif self.weights_dtype == 'fp32':
|
||||
self.inputs['H0'] = h0
|
||||
|
||||
self.inputs['C0'] = c0
|
||||
|
||||
self.outputs = {
|
||||
'Hidden': (hidden, self.lod),
|
||||
'Cell': (c, self.lod),
|
||||
}
|
||||
|
||||
self.attrs = {
|
||||
'use_peepholes': self.use_peepholes,
|
||||
'is_reverse': self.is_reverse,
|
||||
'gate_activation': self.act_gate,
|
||||
'cell_activation': self.act_cell,
|
||||
'candidate_activation': self.act_cand,
|
||||
'force_fp32_output': self.force_fp32_output,
|
||||
'use_mkldnn': self.use_mkldnn
|
||||
}
|
||||
|
||||
|
||||
class TestFusionLSTMBF16ONEDNNPeepholesOp(TestFusionLSTMBF16ONEDNNOp):
|
||||
def set_confs(self):
|
||||
self.use_peepholes = True
|
||||
|
||||
|
||||
class TestFusionLSTMBF16ONEDNNInitializedStateOp(TestFusionLSTMBF16ONEDNNOp):
|
||||
def set_confs(self):
|
||||
self.has_initial_state = True
|
||||
|
||||
|
||||
class TestFusionLSTMBF16ONEDNNReverseOp(TestFusionLSTMBF16ONEDNNOp):
|
||||
def set_confs(self):
|
||||
self.is_reverse = True
|
||||
|
||||
|
||||
class TestFusionLSTMBF16ONEDNNBF16WeightsOp(TestFusionLSTMBF16ONEDNNOp):
|
||||
def set_confs(self):
|
||||
self.weights_dtype = 'bf16'
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from paddle import enable_static
|
||||
enable_static()
|
||||
unittest.main()
|
Loading…
Reference in new issue