|
|
@ -22,7 +22,7 @@ from op_test import OpTest
|
|
|
|
class ElementwiseDivOp(OpTest):
|
|
|
|
class ElementwiseDivOp(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.dtype = np.float32
|
|
|
|
self.dtype = np.float64
|
|
|
|
self.init_dtype()
|
|
|
|
self.init_dtype()
|
|
|
|
""" Warning
|
|
|
|
""" Warning
|
|
|
|
CPU gradient check error!
|
|
|
|
CPU gradient check error!
|
|
|
@ -57,8 +57,8 @@ class TestElementwiseDivOp_scalar(ElementwiseDivOp):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.inputs = {
|
|
|
|
self.inputs = {
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype(np.float32),
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype(np.float64),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [1]).astype(np.float32)
|
|
|
|
'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.outputs = {'Out': self.inputs['X'] / self.inputs['Y']}
|
|
|
|
self.outputs = {'Out': self.inputs['X'] / self.inputs['Y']}
|
|
|
|
|
|
|
|
|
|
|
@ -67,8 +67,8 @@ class TestElementwiseDivOp_Vector(ElementwiseDivOp):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.inputs = {
|
|
|
|
self.inputs = {
|
|
|
|
'X': np.random.uniform(0.1, 1, [32]).astype("float32"),
|
|
|
|
'X': np.random.uniform(0.1, 1, [32]).astype("float64"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [32]).astype("float32")
|
|
|
|
'Y': np.random.uniform(0.1, 1, [32]).astype("float64")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
|
|
|
|
|
@ -77,8 +77,8 @@ class TestElementwiseDivOp_broadcast_0(ElementwiseDivOp):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.inputs = {
|
|
|
|
self.inputs = {
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float64"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2]).astype("float32")
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2]).astype("float64")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
self.attrs = {'axis': 0}
|
|
|
|
self.attrs = {'axis': 0}
|
|
|
@ -92,8 +92,8 @@ class TestElementwiseDivOp_broadcast_1(ElementwiseDivOp):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.inputs = {
|
|
|
|
self.inputs = {
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float64"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [3]).astype("float32")
|
|
|
|
'Y': np.random.uniform(0.1, 1, [3]).astype("float64")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
self.attrs = {'axis': 1}
|
|
|
|
self.attrs = {'axis': 1}
|
|
|
@ -107,8 +107,8 @@ class TestElementwiseDivOp_broadcast_2(ElementwiseDivOp):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.inputs = {
|
|
|
|
self.inputs = {
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float64"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [4]).astype("float32")
|
|
|
|
'Y': np.random.uniform(0.1, 1, [4]).astype("float64")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
self.outputs = {
|
|
|
|
self.outputs = {
|
|
|
@ -121,8 +121,8 @@ class TestElementwiseDivOp_broadcast_3(ElementwiseDivOp):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.inputs = {
|
|
|
|
self.inputs = {
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float32"),
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [3, 4]).astype("float32")
|
|
|
|
'Y': np.random.uniform(0.1, 1, [3, 4]).astype("float64")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
self.attrs = {'axis': 1}
|
|
|
|
self.attrs = {'axis': 1}
|
|
|
@ -136,8 +136,8 @@ class TestElementwiseDivOp_broadcast_4(ElementwiseDivOp):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.inputs = {
|
|
|
|
self.inputs = {
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float64"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2, 1, 4]).astype("float32")
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2, 1, 4]).astype("float64")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
|
|
|
|
|
@ -146,8 +146,8 @@ class TestElementwiseDivOp_broadcast_5(ElementwiseDivOp):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.inputs = {
|
|
|
|
self.inputs = {
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float32"),
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2, 3, 1, 5]).astype("float32")
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2, 3, 1, 5]).astype("float64")
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
|
|
|
|
|
@ -156,8 +156,8 @@ class TestElementwiseDivOp_commonuse_1(ElementwiseDivOp):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.inputs = {
|
|
|
|
self.inputs = {
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float64"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [1, 1, 4]).astype("float32"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [1, 1, 4]).astype("float64"),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
|
|
|
|
|
@ -166,8 +166,8 @@ class TestElementwiseDivOp_commonuse_2(ElementwiseDivOp):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.inputs = {
|
|
|
|
self.inputs = {
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 1, 5]).astype("float32"),
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 1, 5]).astype("float64"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2, 1, 4, 1]).astype("float32"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2, 1, 4, 1]).astype("float64"),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
|
|
|
|
|
@ -176,8 +176,8 @@ class TestElementwiseDivOp_xsize_lessthan_ysize(ElementwiseDivOp):
|
|
|
|
def setUp(self):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.op_type = "elementwise_div"
|
|
|
|
self.inputs = {
|
|
|
|
self.inputs = {
|
|
|
|
'X': np.random.uniform(0.1, 1, [4, 5]).astype("float32"),
|
|
|
|
'X': np.random.uniform(0.1, 1, [4, 5]).astype("float64"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float32"),
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
self.attrs = {'axis': 2}
|
|
|
|
self.attrs = {'axis': 2}
|
|
|
|