parent
d89061c39c
commit
5c057f9552
@ -0,0 +1,148 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
Indicesou may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/operators/math/math_function.h"
|
||||
#include "paddle/operators/math/pooling.h"
|
||||
#include "paddle/operators/strided_memcpy.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
template <typename Place, typename T>
|
||||
class SppKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
const framework::Tensor* in_x = context.Input<framework::Tensor>("X");
|
||||
auto* out = context.Output<framework::Tensor>("Out");
|
||||
int pyramid_height = context.template Attr<int>("pyramid_height");
|
||||
out->mutable_data<T>(context.GetPlace());
|
||||
auto out_stride = framework::stride(out->dims());
|
||||
int input_h = in_x->dims()[2];
|
||||
int input_w = in_x->dims()[3];
|
||||
size_t output_offset = 0;
|
||||
for (int p = 0; p < pyramid_height; ++p) {
|
||||
int bins = std::pow(2, p);
|
||||
int ksize_h = std::ceil(input_h / static_cast<double>(bins));
|
||||
int ksize_w = std::ceil(input_w / static_cast<double>(bins));
|
||||
int padding_h = (ksize_h * bins - input_h + 1) / 2;
|
||||
int padding_w = (ksize_w * bins - input_w + 1) / 2;
|
||||
std::vector<int> ksize({ksize_h, ksize_w});
|
||||
std::vector<int> strides({ksize_h, ksize_w});
|
||||
std::vector<int> paddings({padding_h, padding_w});
|
||||
// pooling output shape
|
||||
std::vector<int64_t> output_shape_vec({in_x->dims()[0], in_x->dims()[1]});
|
||||
output_shape_vec.push_back((input_h - ksize_h + 2 * padding_h) / ksize_h +
|
||||
1);
|
||||
output_shape_vec.push_back((input_w - ksize_w + 2 * padding_w) / ksize_w +
|
||||
1);
|
||||
framework::DDim output_shape(framework::make_ddim(output_shape_vec));
|
||||
// flatten pooling output shape
|
||||
int output_flatten_w = in_x->dims()[1] * bins * bins;
|
||||
std::vector<int64_t> output_flatten_shape_vec(
|
||||
{in_x->dims()[0], output_flatten_w});
|
||||
framework::DDim output_flatten_shape(
|
||||
framework::make_ddim(output_flatten_shape_vec));
|
||||
framework::Tensor out_level;
|
||||
framework::Tensor out_flatten_level;
|
||||
out_level.mutable_data<T>(output_shape, context.GetPlace());
|
||||
// pooling
|
||||
math::Pool2dFunctor<Place, math::MaxPool<T>, T> pool_forward;
|
||||
math::MaxPool<T> max_process;
|
||||
pool_forward(context.device_context(), *in_x, ksize, strides, paddings,
|
||||
max_process, &out_level);
|
||||
out_flatten_level.ShareDataWith(out_level);
|
||||
out_flatten_level.Resize(output_flatten_shape);
|
||||
auto in_stride = framework::stride(out_flatten_level.dims());
|
||||
const T* src_data = out_flatten_level.data<T>();
|
||||
StridedMemcpy<T>(context.device_context(), src_data, in_stride,
|
||||
out_flatten_level.dims(), out_stride,
|
||||
out->data<T>() + output_offset);
|
||||
output_offset += out_flatten_level.dims()[1] * in_stride[1];
|
||||
}
|
||||
}
|
||||
};
|
||||
template <typename Place, typename T>
|
||||
class SppGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
const framework::Tensor* in_x = context.Input<framework::Tensor>("X");
|
||||
const framework::Tensor* out = context.Input<framework::Tensor>("Out");
|
||||
const framework::Tensor* out_grad =
|
||||
context.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
framework::Tensor* in_x_grad =
|
||||
context.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
auto& device_ctx = context.device_context();
|
||||
math::SetConstant<Place, T> zero;
|
||||
in_x_grad->mutable_data<T>(context.GetPlace());
|
||||
zero(device_ctx, in_x_grad, static_cast<T>(0));
|
||||
int pyramid_height = context.template Attr<int>("pyramid_height");
|
||||
auto outgrad_stride = framework::stride(out_grad->dims());
|
||||
auto out_stride = framework::stride(out->dims());
|
||||
int input_h = in_x->dims()[2];
|
||||
int input_w = in_x->dims()[3];
|
||||
size_t out_offset = 0;
|
||||
for (int p = 0; p < pyramid_height; ++p) {
|
||||
int bins = std::pow(2, p);
|
||||
int ksize_h = std::ceil(input_h / static_cast<double>(bins));
|
||||
int ksize_w = std::ceil(input_w / static_cast<double>(bins));
|
||||
int padding_h = (ksize_h * bins - input_h + 1) / 2;
|
||||
int padding_w = (ksize_w * bins - input_w + 1) / 2;
|
||||
std::vector<int> ksize({ksize_h, ksize_w});
|
||||
std::vector<int> strides({ksize_h, ksize_w});
|
||||
std::vector<int> paddings({padding_h, padding_w});
|
||||
// split outgrad and get flatten
|
||||
std::vector<int64_t> out_shape_vec({in_x->dims()[0], in_x->dims()[1]});
|
||||
out_shape_vec.push_back((input_h - ksize_h + 2 * padding_h) / ksize_h +
|
||||
1);
|
||||
out_shape_vec.push_back((input_w - ksize_w + 2 * padding_w) / ksize_w +
|
||||
1);
|
||||
framework::DDim out_shape(framework::make_ddim(out_shape_vec));
|
||||
int out_flatten_w = in_x->dims()[1] * bins * bins;
|
||||
std::vector<int64_t> out_flatten_shape_vec(
|
||||
{in_x->dims()[0], out_flatten_w});
|
||||
framework::DDim out_flatten_shape(
|
||||
framework::make_ddim(out_flatten_shape_vec));
|
||||
framework::Tensor out_level;
|
||||
framework::Tensor outgrad_level;
|
||||
framework::Tensor out_flatten_level;
|
||||
framework::Tensor outgrad_flatten_level;
|
||||
out_flatten_level.mutable_data<T>(out_flatten_shape, context.GetPlace());
|
||||
outgrad_flatten_level.mutable_data<T>(out_flatten_shape,
|
||||
context.GetPlace());
|
||||
|
||||
auto flatten_stride = framework::stride(out_flatten_level.dims());
|
||||
// memcpy
|
||||
StridedMemcpy<T>(context.device_context(), out->data<T>() + out_offset,
|
||||
out_stride, out_flatten_level.dims(), flatten_stride,
|
||||
out_flatten_level.data<T>());
|
||||
|
||||
StridedMemcpy<T>(context.device_context(),
|
||||
out_grad->data<T>() + out_offset, outgrad_stride,
|
||||
outgrad_flatten_level.dims(), flatten_stride,
|
||||
outgrad_flatten_level.data<T>());
|
||||
out_offset += out_flatten_level.dims()[1] * out_stride[1];
|
||||
// flatten backward
|
||||
out_level.ShareDataWith(out_flatten_level);
|
||||
out_level.Resize(out_shape);
|
||||
outgrad_level.ShareDataWith(outgrad_flatten_level);
|
||||
outgrad_level.Resize(out_shape);
|
||||
math::MaxPool2dGradFunctor<Place, T> pool2d_backward;
|
||||
pool2d_backward(context.device_context(), *in_x, *&out_level,
|
||||
*&outgrad_level, ksize, strides, paddings, in_x_grad);
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,48 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
from test_pool2d_op import max_pool2D_forward_naive
|
||||
|
||||
|
||||
class TestSppOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "spp"
|
||||
self.init_test_case()
|
||||
input = np.random.random(self.shape).astype("float32")
|
||||
nsize, csize, hsize, wsize = input.shape
|
||||
out_level_flatten = []
|
||||
for i in xrange(self.pyramid_height):
|
||||
bins = np.power(2, i)
|
||||
ksize = [0, 0]
|
||||
padding = [0, 0]
|
||||
ksize[0] = np.ceil(hsize / bins.astype("double")).astype("int32")
|
||||
padding[0] = ((ksize[0] * bins - hsize + 1) / 2).astype("int32")
|
||||
|
||||
ksize[1] = np.ceil(wsize / bins.astype("double")).astype("int32")
|
||||
padding[1] = ((ksize[1] * bins - wsize + 1) / 2).astype("int32")
|
||||
out_level = max_pool2D_forward_naive(input, ksize, ksize, padding)
|
||||
out_level_flatten.append(
|
||||
out_level.reshape(nsize, bins * bins * csize))
|
||||
if i == 0:
|
||||
output = out_level_flatten[i]
|
||||
else:
|
||||
output = np.concatenate((output, out_level_flatten[i]), 1)
|
||||
# output = np.concatenate(out_level_flatten.tolist(), 0);
|
||||
self.inputs = {'X': input.astype('float32'), }
|
||||
self.attrs = {'pyramid_height': self.pyramid_height}
|
||||
|
||||
self.outputs = {'Out': output.astype('float32')}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
def init_test_case(self):
|
||||
self.shape = [1, 1, 2, 2]
|
||||
self.pyramid_height = 2
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue