Fix grad clip (#21784)
* fix grad clip, clip op belongs to Backward op when running in Parameter Server mode.release/1.7
parent
14aebc7a95
commit
5c33919328
@ -0,0 +1,138 @@
|
|||||||
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import os
|
||||||
|
import unittest
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
||||||
|
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
|
||||||
|
from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig
|
||||||
|
from test_dist_fleet_base import TestFleetBase
|
||||||
|
from dist_simnet_bow import train_network
|
||||||
|
|
||||||
|
|
||||||
|
class TestDistGeoClipByGlobalNormTranspiler(unittest.TestCase):
|
||||||
|
def test_pserver(self):
|
||||||
|
role = role_maker.UserDefinedRoleMaker(
|
||||||
|
current_id=0,
|
||||||
|
role=role_maker.Role.SERVER,
|
||||||
|
worker_num=2,
|
||||||
|
server_endpoints=["127.0.0.1:36011", "127.0.0.1:36012"])
|
||||||
|
|
||||||
|
fleet.init(role)
|
||||||
|
|
||||||
|
batch_size = 128
|
||||||
|
is_sparse = True
|
||||||
|
is_distribute = False
|
||||||
|
|
||||||
|
strategy = DistributeTranspilerConfig()
|
||||||
|
strategy.sync_mode = False
|
||||||
|
strategy.geo_sgd_mode = True
|
||||||
|
strategy.geo_sgd_need_push_nums = 5
|
||||||
|
|
||||||
|
avg_cost, _, _ = train_network(batch_size, is_distribute, is_sparse)
|
||||||
|
fluid.clip.set_gradient_clip(
|
||||||
|
clip=fluid.clip.GradientClipByGlobalNorm(2.0))
|
||||||
|
|
||||||
|
optimizer = fluid.optimizer.SGD(0.1)
|
||||||
|
optimizer = fleet.distributed_optimizer(optimizer, strategy)
|
||||||
|
optimizer.minimize(avg_cost)
|
||||||
|
|
||||||
|
pserver_startup_program = fleet.startup_program
|
||||||
|
pserver_mian_program = fleet.main_program
|
||||||
|
|
||||||
|
|
||||||
|
class TestDistGeoClipByGlobalNorm(TestFleetBase):
|
||||||
|
def _setup_config(self):
|
||||||
|
self._mode = "geo"
|
||||||
|
self._reader = "dataset"
|
||||||
|
self._geo_sgd_need_push_nums = 5
|
||||||
|
self._grad_clip_mode = 3
|
||||||
|
|
||||||
|
def check_with_place(self,
|
||||||
|
model_file,
|
||||||
|
delta=1e-3,
|
||||||
|
check_error_log=False,
|
||||||
|
need_envs={}):
|
||||||
|
required_envs = {
|
||||||
|
"PATH": os.getenv("PATH", ""),
|
||||||
|
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
|
||||||
|
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
|
||||||
|
"FLAGS_rpc_deadline": "5000", # 5sec to fail fast
|
||||||
|
"http_proxy": ""
|
||||||
|
}
|
||||||
|
required_envs.update(need_envs)
|
||||||
|
|
||||||
|
tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs)
|
||||||
|
|
||||||
|
def test_dist_train(self):
|
||||||
|
self.check_with_place(
|
||||||
|
"dist_fleet_ctr.py", delta=1e-5, check_error_log=True)
|
||||||
|
|
||||||
|
def _setup_config(self):
|
||||||
|
self._sync_mode = False
|
||||||
|
self._grad_clip_mode = 2
|
||||||
|
|
||||||
|
def check_with_place(self,
|
||||||
|
model_file,
|
||||||
|
delta=1e-3,
|
||||||
|
check_error_log=False,
|
||||||
|
need_envs={}):
|
||||||
|
required_envs = {
|
||||||
|
"PATH": os.getenv("PATH", ""),
|
||||||
|
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
|
||||||
|
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
|
||||||
|
"FLAGS_rpc_deadline": "5000", # 5sec to fail fast
|
||||||
|
"http_proxy": ""
|
||||||
|
}
|
||||||
|
required_envs.update(need_envs)
|
||||||
|
|
||||||
|
tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs)
|
||||||
|
|
||||||
|
def test_dist_train(self):
|
||||||
|
self.check_with_place(
|
||||||
|
"dist_fleet_ctr.py", delta=1e-5, check_error_log=True)
|
||||||
|
|
||||||
|
|
||||||
|
class TestDistASyncClipByGlobalNorm(TestFleetBase):
|
||||||
|
def _setup_config(self):
|
||||||
|
self._mode = "async"
|
||||||
|
self._reader = "dataset"
|
||||||
|
self._grad_clip_mode = 3
|
||||||
|
|
||||||
|
def check_with_place(self,
|
||||||
|
model_file,
|
||||||
|
delta=1e-3,
|
||||||
|
check_error_log=False,
|
||||||
|
need_envs={}):
|
||||||
|
required_envs = {
|
||||||
|
"PATH": os.getenv("PATH", ""),
|
||||||
|
"PYTHONPATH": os.getenv("PYTHONPATH", ""),
|
||||||
|
"LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
|
||||||
|
"FLAGS_rpc_deadline": "5000", # 5sec to fail fast
|
||||||
|
"http_proxy": ""
|
||||||
|
}
|
||||||
|
required_envs.update(need_envs)
|
||||||
|
|
||||||
|
tr0_losses, tr1_losses = self._run_cluster(model_file, required_envs)
|
||||||
|
|
||||||
|
def test_dist_train(self):
|
||||||
|
self.check_with_place(
|
||||||
|
"dist_fleet_ctr.py", delta=1e-5, check_error_log=True)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue