Merge pull request #7429 from putcn/book_demo_distributed_understand_sentiment_
Book demo understand sentiment distributed versionadd_depthwiseConv_op_gpu
commit
5d9dcfc1d0
@ -0,0 +1,110 @@
|
|||||||
|
from __future__ import print_function
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
import paddle.v2 as paddle
|
||||||
|
import paddle.v2.fluid as fluid
|
||||||
|
|
||||||
|
|
||||||
|
def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
|
||||||
|
hid_dim=32):
|
||||||
|
emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim])
|
||||||
|
conv_3 = fluid.nets.sequence_conv_pool(
|
||||||
|
input=emb,
|
||||||
|
num_filters=hid_dim,
|
||||||
|
filter_size=3,
|
||||||
|
act="tanh",
|
||||||
|
pool_type="sqrt")
|
||||||
|
conv_4 = fluid.nets.sequence_conv_pool(
|
||||||
|
input=emb,
|
||||||
|
num_filters=hid_dim,
|
||||||
|
filter_size=4,
|
||||||
|
act="tanh",
|
||||||
|
pool_type="sqrt")
|
||||||
|
prediction = fluid.layers.fc(input=[conv_3, conv_4],
|
||||||
|
size=class_dim,
|
||||||
|
act="softmax")
|
||||||
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||||
|
avg_cost = fluid.layers.mean(x=cost)
|
||||||
|
adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
|
||||||
|
optimize_ops, params_grads = adam_optimizer.minimize(avg_cost)
|
||||||
|
accuracy = fluid.evaluator.Accuracy(input=prediction, label=label)
|
||||||
|
return avg_cost, accuracy, accuracy.metrics[0], optimize_ops, params_grads
|
||||||
|
|
||||||
|
|
||||||
|
def to_lodtensor(data, place):
|
||||||
|
seq_lens = [len(seq) for seq in data]
|
||||||
|
cur_len = 0
|
||||||
|
lod = [cur_len]
|
||||||
|
for l in seq_lens:
|
||||||
|
cur_len += l
|
||||||
|
lod.append(cur_len)
|
||||||
|
flattened_data = np.concatenate(data, axis=0).astype("int64")
|
||||||
|
flattened_data = flattened_data.reshape([len(flattened_data), 1])
|
||||||
|
res = fluid.LoDTensor()
|
||||||
|
res.set(flattened_data, place)
|
||||||
|
res.set_lod([lod])
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
BATCH_SIZE = 100
|
||||||
|
PASS_NUM = 5
|
||||||
|
|
||||||
|
word_dict = paddle.dataset.imdb.word_dict()
|
||||||
|
dict_dim = len(word_dict)
|
||||||
|
class_dim = 2
|
||||||
|
|
||||||
|
data = fluid.layers.data(
|
||||||
|
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||||
|
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||||
|
cost, accuracy, acc_out, optimize_ops, params_grads = convolution_net(
|
||||||
|
data, label, input_dim=dict_dim, class_dim=class_dim)
|
||||||
|
|
||||||
|
train_data = paddle.batch(
|
||||||
|
paddle.reader.shuffle(
|
||||||
|
paddle.dataset.imdb.train(word_dict), buf_size=1000),
|
||||||
|
batch_size=BATCH_SIZE)
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
|
||||||
|
t = fluid.DistributeTranspiler()
|
||||||
|
|
||||||
|
# all parameter server endpoints list for spliting parameters
|
||||||
|
pserver_endpoints = os.getenv("PSERVERS")
|
||||||
|
# server endpoint for current node
|
||||||
|
current_endpoint = os.getenv("SERVER_ENDPOINT")
|
||||||
|
# run as trainer or parameter server
|
||||||
|
training_role = os.getenv(
|
||||||
|
"TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver
|
||||||
|
t.transpile(
|
||||||
|
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
|
||||||
|
|
||||||
|
exe.run(fluid.default_startup_program())
|
||||||
|
|
||||||
|
if training_role == "PSERVER":
|
||||||
|
if not current_endpoint:
|
||||||
|
print("need env SERVER_ENDPOINT")
|
||||||
|
exit(1)
|
||||||
|
pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops)
|
||||||
|
exe.run(pserver_prog)
|
||||||
|
elif training_role == "TRAINER":
|
||||||
|
trainer_prog = t.get_trainer_program()
|
||||||
|
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
|
||||||
|
|
||||||
|
for pass_id in xrange(PASS_NUM):
|
||||||
|
accuracy.reset(exe)
|
||||||
|
for data in train_data():
|
||||||
|
cost_val, acc_val = exe.run(trainer_prog,
|
||||||
|
feed=feeder.feed(data),
|
||||||
|
fetch_list=[cost, acc_out])
|
||||||
|
pass_acc = accuracy.eval(exe)
|
||||||
|
print("cost=" + str(cost_val) + " acc=" + str(acc_val) +
|
||||||
|
" pass_acc=" + str(pass_acc))
|
||||||
|
if cost_val < 1.0 and pass_acc > 0.8:
|
||||||
|
exit(0)
|
||||||
|
else:
|
||||||
|
print("environment var TRAINER_ROLE should be TRAINER os PSERVER")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
Reference in new issue