Fix mem leak when converting Tensor to numpy array (#17182)
* fix mem leak when converting Tensor to numpy array test=develop * remove unused unittest,test=develop * follow comments, test=develop * fix dygraph bug,test=developfeature/fluid_trt_int8
parent
e4a5332416
commit
5dfe2ab9e8
@ -1,44 +0,0 @@
|
|||||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
//
|
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
// you may not use this file except in compliance with the License.
|
|
||||||
// You may obtain a copy of the License at
|
|
||||||
//
|
|
||||||
// http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
//
|
|
||||||
// Unless required by applicable law or agreed to in writing, software
|
|
||||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
// See the License for the specific language governing permissions and
|
|
||||||
// limitations under the License.
|
|
||||||
|
|
||||||
#include "paddle/fluid/pybind/tensor_py.h"
|
|
||||||
|
|
||||||
#include <iostream>
|
|
||||||
|
|
||||||
#include "gtest/gtest.h"
|
|
||||||
#include "paddle/fluid/framework/tensor.h"
|
|
||||||
|
|
||||||
TEST(TensorPy, CastToPyBufferImpl) {
|
|
||||||
typedef int ElemType;
|
|
||||||
|
|
||||||
paddle::framework::Tensor t;
|
|
||||||
auto d = paddle::framework::make_ddim({1, 2, 3});
|
|
||||||
int* p = t.mutable_data<ElemType>(d, paddle::platform::CPUPlace());
|
|
||||||
for (int i = 0; i < paddle::framework::product(d); ++i) {
|
|
||||||
p[i] = i;
|
|
||||||
}
|
|
||||||
|
|
||||||
pybind11::buffer_info bi = paddle::pybind::CastToPyBuffer(t);
|
|
||||||
EXPECT_EQ(bi.itemsize, static_cast<size_t>(sizeof(ElemType)));
|
|
||||||
EXPECT_EQ(bi.size, static_cast<size_t>(paddle::framework::product(d)));
|
|
||||||
EXPECT_EQ(bi.ndim, static_cast<size_t>(3)); // 3-dimensional as d.
|
|
||||||
EXPECT_EQ(bi.shape.size(), 3U); // as Dim d.
|
|
||||||
EXPECT_EQ(bi.shape[0], static_cast<size_t>(1));
|
|
||||||
EXPECT_EQ(bi.shape[1], static_cast<size_t>(2));
|
|
||||||
EXPECT_EQ(bi.shape[2], static_cast<size_t>(3));
|
|
||||||
EXPECT_EQ(bi.strides.size(), 3U); // 3-dimensional as d.
|
|
||||||
EXPECT_EQ(bi.strides[2], static_cast<size_t>(sizeof(ElemType)));
|
|
||||||
EXPECT_EQ(bi.strides[1], static_cast<size_t>(sizeof(ElemType) * 3));
|
|
||||||
EXPECT_EQ(bi.strides[0], static_cast<size_t>(sizeof(ElemType) * 2 * 3));
|
|
||||||
}
|
|
@ -0,0 +1,53 @@
|
|||||||
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
import six
|
||||||
|
|
||||||
|
|
||||||
|
class TensorToNumpyTest(unittest.TestCase):
|
||||||
|
def setUp(self):
|
||||||
|
self.shape = [11, 25, 32, 43]
|
||||||
|
|
||||||
|
def test_main(self):
|
||||||
|
dtypes = [
|
||||||
|
'float32', 'float64', 'int32', 'int64', 'uint8', 'int8', 'bool'
|
||||||
|
]
|
||||||
|
|
||||||
|
places = [fluid.CPUPlace()]
|
||||||
|
if fluid.core.is_compiled_with_cuda():
|
||||||
|
places.append(fluid.CUDAPlace(0))
|
||||||
|
places.append(fluid.CUDAPinnedPlace())
|
||||||
|
|
||||||
|
for p in places:
|
||||||
|
for dtype in dtypes:
|
||||||
|
np_arr = np.reshape(
|
||||||
|
np.array(six.moves.range(np.prod(self.shape))).astype(
|
||||||
|
dtype), self.shape)
|
||||||
|
|
||||||
|
t = fluid.LoDTensor()
|
||||||
|
t.set(np_arr, p)
|
||||||
|
|
||||||
|
ret_np_arr = np.array(t)
|
||||||
|
self.assertEqual(np_arr.shape, ret_np_arr.shape)
|
||||||
|
self.assertEqual(np_arr.dtype, ret_np_arr.dtype)
|
||||||
|
|
||||||
|
all_equal = np.all(np_arr == ret_np_arr)
|
||||||
|
self.assertTrue(all_equal)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue