add kernel for unsqueeze_op and Add unsqueezed op test, test=develop (#19436)
* add kernel for unsqueeze_op, test=develop * add kernel for unsqueeze_op, test=develop * add kernel for unsqueeze_op, test=developnew_fix
parent
a7691603a5
commit
5f627488db
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,45 @@
|
|||||||
|
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/unsqueeze_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
unsqueeze, ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, float>,
|
||||||
|
ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, double>,
|
||||||
|
ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, int>,
|
||||||
|
ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||||
|
ops::UnsqueezeKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
unsqueeze_grad,
|
||||||
|
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||||
|
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||||
|
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||||
|
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||||
|
ops::UnsqueezeGradKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
unsqueeze2,
|
||||||
|
ops::Unsqueeze2Kernel<paddle::platform::CUDADeviceContext, float>,
|
||||||
|
ops::Unsqueeze2Kernel<paddle::platform::CUDADeviceContext, double>,
|
||||||
|
ops::Unsqueeze2Kernel<paddle::platform::CUDADeviceContext, int>,
|
||||||
|
ops::Unsqueeze2Kernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||||
|
ops::Unsqueeze2Kernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
unsqueeze2_grad,
|
||||||
|
ops::Unsqueeze2GradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||||
|
ops::Unsqueeze2GradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||||
|
ops::Unsqueeze2GradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||||
|
ops::Unsqueeze2GradKernel<paddle::platform::CUDADeviceContext, int8_t>,
|
||||||
|
ops::Unsqueeze2GradKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
@ -0,0 +1,137 @@
|
|||||||
|
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
#include "paddle/fluid/operators/math/blas.h"
|
||||||
|
#include "paddle/fluid/operators/math/math_function.h"
|
||||||
|
#include "paddle/fluid/operators/math/pooling.h"
|
||||||
|
#include "paddle/fluid/platform/device_context.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class UnsqueezeKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext &context) const override {
|
||||||
|
auto &axes = context.Attr<std::vector<int>>("axes");
|
||||||
|
auto *in = context.Input<framework::LoDTensor>("X");
|
||||||
|
auto *out = context.Output<framework::LoDTensor>("Out");
|
||||||
|
auto x_dims = in->dims();
|
||||||
|
auto out_dims = GetOutputShape(axes, x_dims);
|
||||||
|
|
||||||
|
out->mutable_data(context.GetPlace(), in->type());
|
||||||
|
framework::TensorCopy(
|
||||||
|
*in, context.GetPlace(),
|
||||||
|
context.template device_context<platform::DeviceContext>(), out);
|
||||||
|
out->Resize(out_dims);
|
||||||
|
}
|
||||||
|
|
||||||
|
static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
|
||||||
|
const framework::DDim &in_dims) {
|
||||||
|
int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
|
||||||
|
int cur_output_size = in_dims.size();
|
||||||
|
std::vector<int64_t> output_shape(output_size, 0);
|
||||||
|
|
||||||
|
// Validity Check: rank range.
|
||||||
|
PADDLE_ENFORCE_LE(output_size, 6,
|
||||||
|
"The output tensor's rank should be less than 6.");
|
||||||
|
|
||||||
|
for (int axis : unsqz_dims) {
|
||||||
|
int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
|
||||||
|
// Vaildity Check: the axis bound
|
||||||
|
PADDLE_ENFORCE_GE(cur, 0);
|
||||||
|
PADDLE_ENFORCE_LE(cur, cur_output_size);
|
||||||
|
// Move old axis, and insert new axis
|
||||||
|
for (int i = cur_output_size; i >= cur; --i) {
|
||||||
|
if (output_shape[i] == 1) {
|
||||||
|
// Move axis
|
||||||
|
output_shape[i + 1] = 1;
|
||||||
|
output_shape[i] = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
output_shape[cur] = 1;
|
||||||
|
// Add the output size.
|
||||||
|
cur_output_size++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Make output shape
|
||||||
|
for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
|
||||||
|
if (output_shape[out_idx] == 0) {
|
||||||
|
output_shape[out_idx] = in_dims[in_idx++];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return framework::make_ddim(output_shape);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class UnsqueezeGradKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||||
|
auto *d_out =
|
||||||
|
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
||||||
|
auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
||||||
|
auto in_dims = ctx.Input<framework::LoDTensor>("X")->dims();
|
||||||
|
|
||||||
|
d_x->mutable_data(ctx.GetPlace(), d_out->type());
|
||||||
|
framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
|
||||||
|
d_x->Resize(in_dims);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class Unsqueeze2Kernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext &context) const override {
|
||||||
|
auto *out = context.Output<framework::LoDTensor>("Out");
|
||||||
|
auto *in = context.Input<framework::LoDTensor>("X");
|
||||||
|
|
||||||
|
auto &axes = context.Attr<std::vector<int>>("axes");
|
||||||
|
|
||||||
|
auto x_dims = in->dims();
|
||||||
|
auto out_dims =
|
||||||
|
UnsqueezeKernel<DeviceContext, T>::GetOutputShape(axes, x_dims);
|
||||||
|
|
||||||
|
out->mutable_data(context.GetPlace(), in->type());
|
||||||
|
framework::TensorCopy(
|
||||||
|
*in, context.GetPlace(),
|
||||||
|
context.template device_context<platform::DeviceContext>(), out);
|
||||||
|
out->Resize(out_dims);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class Unsqueeze2GradKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||||
|
auto *d_out =
|
||||||
|
ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
||||||
|
auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
||||||
|
// auto in_dims = d_x->dims();
|
||||||
|
|
||||||
|
auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
|
||||||
|
auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
|
||||||
|
|
||||||
|
d_x->mutable_data(ctx.GetPlace(), d_out->type());
|
||||||
|
framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
|
||||||
|
d_x->Resize(x_dims);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,83 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
# Correct: General.
|
||||||
|
class TestUnsqueezeOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.init_test_case()
|
||||||
|
self.op_type = "unsqueeze2"
|
||||||
|
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
|
||||||
|
self.init_attrs()
|
||||||
|
self.outputs = {
|
||||||
|
"Out": self.inputs["X"].reshape(self.new_shape),
|
||||||
|
"XShape": np.random.random(self.ori_shape).astype("float32")
|
||||||
|
}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output(no_check_set=["XShape"])
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(["X"], "Out")
|
||||||
|
|
||||||
|
def init_test_case(self):
|
||||||
|
self.ori_shape = (3, 5)
|
||||||
|
self.axes = (1, 2)
|
||||||
|
self.new_shape = (3, 1, 1, 5)
|
||||||
|
|
||||||
|
def init_attrs(self):
|
||||||
|
self.attrs = {"axes": self.axes}
|
||||||
|
|
||||||
|
|
||||||
|
# Correct: Single input index.
|
||||||
|
class TestUnsqueezeOp1(TestUnsqueezeOp):
|
||||||
|
def init_test_case(self):
|
||||||
|
self.ori_shape = (3, 5)
|
||||||
|
self.axes = (-1, )
|
||||||
|
self.new_shape = (3, 5, 1)
|
||||||
|
|
||||||
|
|
||||||
|
# Correct: Mixed input axis.
|
||||||
|
class TestUnsqueezeOp2(TestUnsqueezeOp):
|
||||||
|
def init_test_case(self):
|
||||||
|
self.ori_shape = (3, 5)
|
||||||
|
self.axes = (0, -1)
|
||||||
|
self.new_shape = (1, 3, 5, 1)
|
||||||
|
|
||||||
|
|
||||||
|
# Correct: There is duplicated axis.
|
||||||
|
class TestUnsqueezeOp3(TestUnsqueezeOp):
|
||||||
|
def init_test_case(self):
|
||||||
|
self.ori_shape = (3, 2, 5)
|
||||||
|
self.axes = (0, 3, 3)
|
||||||
|
self.new_shape = (1, 3, 2, 1, 1, 5)
|
||||||
|
|
||||||
|
|
||||||
|
# Correct: Reversed axes.
|
||||||
|
class TestUnsqueezeOp4(TestUnsqueezeOp):
|
||||||
|
def init_test_case(self):
|
||||||
|
self.ori_shape = (3, 2, 5)
|
||||||
|
self.axes = (3, 1, 1)
|
||||||
|
self.new_shape = (3, 1, 1, 2, 5, 1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue