commit
5f79c7fbb6
@ -0,0 +1,87 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/argsort_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class ArgsortOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||||
|
"Input(X) of ArgsortOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||||
|
"Output(Out) of ArgsortOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Indices"),
|
||||||
|
"Output(Indices) of ArgsortOp should not be null.");
|
||||||
|
|
||||||
|
auto in_dims = ctx->GetInputDim("X");
|
||||||
|
int axis = ctx->Attrs().Get<int>("axis");
|
||||||
|
|
||||||
|
auto num_dims = in_dims.size();
|
||||||
|
PADDLE_ENFORCE(axis < num_dims,
|
||||||
|
"Attr(axis) %d of ArgsortOp is out of bounds for Input(X)'s "
|
||||||
|
"rank %d.",
|
||||||
|
axis, num_dims);
|
||||||
|
PADDLE_ENFORCE(axis >= -num_dims,
|
||||||
|
"Attr(axis) %d of ArgsortOp must be not less than "
|
||||||
|
"-rank(Input(X)) (%d).",
|
||||||
|
axis, num_dims);
|
||||||
|
|
||||||
|
ctx->SetOutputDim("Out", in_dims);
|
||||||
|
ctx->SetOutputDim("Indices", in_dims);
|
||||||
|
ctx->ShareLoD("X", "Out");
|
||||||
|
ctx->ShareLoD("X", "Indices");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ArgsortOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
void Make() override {
|
||||||
|
AddInput("X", "(Tensor) The input of Argsort op.");
|
||||||
|
AddOutput("Out",
|
||||||
|
"(Tensor) The sorted tensor of Argsort op, with the same "
|
||||||
|
"shape as Input(X).");
|
||||||
|
AddOutput("Indices",
|
||||||
|
"(Tensor) The indices of a tensor giving the sorted order, with "
|
||||||
|
"the same shape as Input(X).");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Argsort operator
|
||||||
|
|
||||||
|
Performs sorting on the input tensor along the given axis and outputs two
|
||||||
|
tensors, Output(Out) and Output(Indices). They reserve the same shape
|
||||||
|
with Input(X), and Output(Out) represents the sorted tensor while
|
||||||
|
Output(Indices) gives the sorted order along the given axis Attr(axis).
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
AddAttr<int>("axis",
|
||||||
|
"(int, default -1) The axis along which to sort the tensor. "
|
||||||
|
"When axis < 0, the actual axis will be the |axis|'th "
|
||||||
|
"counting backwards. Default -1, the last dimension.")
|
||||||
|
.SetDefault(-1);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OPERATOR(argsort, ops::ArgsortOp, ops::ArgsortOpMaker,
|
||||||
|
paddle::framework::EmptyGradOpMaker);
|
||||||
|
REGISTER_OP_CPU_KERNEL(argsort,
|
||||||
|
ops::ArgsortKernel<paddle::platform::CPUPlace, float>,
|
||||||
|
ops::ArgsortKernel<paddle::platform::CPUPlace, double>);
|
@ -0,0 +1,151 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include <thrust/execution_policy.h>
|
||||||
|
#include <thrust/sort.h>
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
#include "paddle/fluid/operators/argsort_op.h"
|
||||||
|
#include "paddle/fluid/platform/assert.h"
|
||||||
|
#include "paddle/fluid/platform/cuda_device_function.h"
|
||||||
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
using platform::PADDLE_CUDA_NUM_THREADS;
|
||||||
|
|
||||||
|
const int kMaxRank = 9; // The max rank of a tensor allowed in Fluid
|
||||||
|
|
||||||
|
__global__ void ComputeTargetIdx(const int64_t* in_dims, int dims_size,
|
||||||
|
int axis, int64_t n, int64_t* trg_idx,
|
||||||
|
int64_t* med_ids) {
|
||||||
|
int64_t index = threadIdx.x + blockDim.x * blockIdx.x;
|
||||||
|
if (index < n) {
|
||||||
|
int64_t shape_out_axis[kMaxRank - 1] = {0};
|
||||||
|
int64_t dims_out_axis[kMaxRank - 1] = {0};
|
||||||
|
int64_t tmp = index;
|
||||||
|
int64_t pos_in_axis = 0;
|
||||||
|
int64_t i = dims_size - 2;
|
||||||
|
int64_t dim_axis = 0;
|
||||||
|
for (int64_t j = dims_size - 1; j >= 0; --j) {
|
||||||
|
int64_t dim = in_dims[j];
|
||||||
|
if (j != axis) {
|
||||||
|
shape_out_axis[i] = tmp % dim;
|
||||||
|
dims_out_axis[i] = dim;
|
||||||
|
i--;
|
||||||
|
} else {
|
||||||
|
dim_axis = dim;
|
||||||
|
pos_in_axis = tmp % dim_axis;
|
||||||
|
}
|
||||||
|
tmp /= dim;
|
||||||
|
}
|
||||||
|
int64_t group = (dims_size > 1) ? shape_out_axis[0] : 0;
|
||||||
|
for (int64_t j = 0; j < dims_size - 2; ++j) {
|
||||||
|
group = group * dims_out_axis[j + 1] + shape_out_axis[j + 1];
|
||||||
|
}
|
||||||
|
|
||||||
|
int64_t traget_idx = group * dim_axis + pos_in_axis;
|
||||||
|
trg_idx[index] = traget_idx;
|
||||||
|
med_ids[traget_idx] = pos_in_axis;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void PermuteInData(const T* in, const int64_t* trg_idx, int64_t n,
|
||||||
|
T* med_out) {
|
||||||
|
int index = threadIdx.x + blockDim.x * blockIdx.x;
|
||||||
|
if (index < n) {
|
||||||
|
med_out[trg_idx[index]] = in[index];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void Sort(int64_t axis_dim, int64_t groups, T* med_out,
|
||||||
|
int64_t* med_ids) {
|
||||||
|
int index = threadIdx.x + blockDim.x * blockIdx.x;
|
||||||
|
if (index < groups) {
|
||||||
|
thrust::sort_by_key(thrust::device, med_out + index * axis_dim,
|
||||||
|
med_out + axis_dim * (1 + index),
|
||||||
|
med_ids + index * axis_dim);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void PermuteMediateData(const T* med_out, const int64_t* med_ids,
|
||||||
|
const int64_t* trg_idx, int64_t n, T* out,
|
||||||
|
int64_t* indices) {
|
||||||
|
int index = threadIdx.x + blockDim.x * blockIdx.x;
|
||||||
|
if (index < n) {
|
||||||
|
out[index] = med_out[trg_idx[index]];
|
||||||
|
indices[index] = med_ids[trg_idx[index]];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class ArgsortOpCUDAKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto* input = ctx.Input<Tensor>("X");
|
||||||
|
auto* output = ctx.Output<Tensor>("Out");
|
||||||
|
auto* indices = ctx.Output<Tensor>("Indices");
|
||||||
|
int axis = ctx.Attr<int>("axis");
|
||||||
|
|
||||||
|
auto in_dims = input->dims();
|
||||||
|
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
|
||||||
|
|
||||||
|
const T* in_data = input->data<T>();
|
||||||
|
T* out_data = output->mutable_data<T>(ctx.GetPlace());
|
||||||
|
int64_t* ids_data = indices->mutable_data<int64_t>(ctx.GetPlace());
|
||||||
|
|
||||||
|
int64_t numel = input->numel();
|
||||||
|
int64_t groups = numel / in_dims[axis];
|
||||||
|
|
||||||
|
std::vector<int64_t> in_dims_vec = vectorize(in_dims);
|
||||||
|
thrust::device_vector<int64_t> in_dims_dev(in_dims_vec.begin(),
|
||||||
|
in_dims_vec.end());
|
||||||
|
int64_t* in_dims_data = thrust::raw_pointer_cast(in_dims_dev.data());
|
||||||
|
// Mediate tensor for sorting data and indices
|
||||||
|
Tensor mediate_output, mediate_indices;
|
||||||
|
T* med_out_data =
|
||||||
|
mediate_output.mutable_data<T>(input->dims(), ctx.GetPlace());
|
||||||
|
int64_t* med_ids_data =
|
||||||
|
mediate_indices.mutable_data<int64_t>(in_dims, ctx.GetPlace());
|
||||||
|
// Target index of each element along the given axis in the mediate tensors
|
||||||
|
Tensor trg_idx_t;
|
||||||
|
int64_t* trg_idx = trg_idx_t.mutable_data<int64_t>(in_dims, ctx.GetPlace());
|
||||||
|
|
||||||
|
auto stream = ctx.cuda_device_context().stream();
|
||||||
|
const int num_threads = PADDLE_CUDA_NUM_THREADS;
|
||||||
|
|
||||||
|
ComputeTargetIdx<<<(numel - 1) / num_threads + 1, num_threads, 0, stream>>>(
|
||||||
|
in_dims_data, in_dims.size(), axis, numel, trg_idx, med_ids_data);
|
||||||
|
|
||||||
|
PermuteInData<<<(numel - 1) / num_threads + 1, num_threads, 0, stream>>>(
|
||||||
|
in_data, trg_idx, numel, med_out_data);
|
||||||
|
|
||||||
|
Sort<<<(groups - 1) / num_threads + 1, num_threads, 0, stream>>>(
|
||||||
|
in_dims[axis], groups, med_out_data, med_ids_data);
|
||||||
|
|
||||||
|
PermuteMediateData<<<(numel - 1) / num_threads + 1, num_threads, 0,
|
||||||
|
stream>>>(med_out_data, med_ids_data, trg_idx, numel,
|
||||||
|
out_data, ids_data);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
REGISTER_OP_CUDA_KERNEL(argsort, paddle::operators::ArgsortOpCUDAKernel<float>,
|
||||||
|
paddle::operators::ArgsortOpCUDAKernel<double>);
|
@ -0,0 +1,81 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include <algorithm>
|
||||||
|
#include <utility>
|
||||||
|
#include <vector>
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class ArgsortKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto* input = ctx.Input<framework::Tensor>("X");
|
||||||
|
auto* output = ctx.Output<framework::Tensor>("Out");
|
||||||
|
auto* indices = ctx.Output<framework::Tensor>("Indices");
|
||||||
|
int axis = ctx.Attr<int>("axis");
|
||||||
|
|
||||||
|
auto in_dims = input->dims();
|
||||||
|
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
|
||||||
|
|
||||||
|
const T* in_data = input->data<T>();
|
||||||
|
T* out_data = output->mutable_data<T>(ctx.GetPlace());
|
||||||
|
int64_t* ids_data = indices->mutable_data<int64_t>(ctx.GetPlace());
|
||||||
|
|
||||||
|
int64_t groups = input->numel() / in_dims[axis];
|
||||||
|
int64_t stride = (axis == in_dims.size() - 1)
|
||||||
|
? 1
|
||||||
|
: framework::product(framework::slice_ddim(
|
||||||
|
in_dims, axis + 1, in_dims.size()));
|
||||||
|
|
||||||
|
for (int64_t i = 0; i < groups; ++i) {
|
||||||
|
int64_t idx = i;
|
||||||
|
std::vector<int64_t> shape_vec(in_dims.size(), 0);
|
||||||
|
for (int64_t dim = in_dims.size() - 1; dim >= 0; --dim) {
|
||||||
|
if (dim != axis) {
|
||||||
|
shape_vec[dim] = idx % in_dims[dim];
|
||||||
|
idx /= in_dims[dim];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int64_t start_index = shape_vec[0];
|
||||||
|
for (int64_t dim = 0; dim < in_dims.size() - 1; ++dim) {
|
||||||
|
start_index = start_index * in_dims[dim + 1] + shape_vec[dim + 1];
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<int64_t> org_index_vec(in_dims[axis], start_index);
|
||||||
|
for (int64_t j = 1; j < in_dims[axis]; ++j) {
|
||||||
|
org_index_vec[j] += j * stride;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::sort(org_index_vec.begin(), org_index_vec.end(),
|
||||||
|
[in_data](const int64_t v1, const int64_t v2) {
|
||||||
|
return in_data[v1] < in_data[v2];
|
||||||
|
});
|
||||||
|
|
||||||
|
for (size_t j = 0; j < org_index_vec.size(); ++j) {
|
||||||
|
int64_t index = start_index + j * stride;
|
||||||
|
out_data[index] = in_data[org_index_vec[j]];
|
||||||
|
ids_data[index] = (org_index_vec[j] - start_index) / stride;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,56 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestArgsortOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.init_axis()
|
||||||
|
x = np.random.random((2, 3, 4, 5, 10)).astype("float32")
|
||||||
|
if self.axis < 0:
|
||||||
|
self.axis = self.axis + len(x.shape)
|
||||||
|
self.indices = np.argsort(x, kind='quicksort', axis=self.axis)
|
||||||
|
self.out = np.sort(x, kind='quicksort', axis=self.axis)
|
||||||
|
self.op_type = "argsort"
|
||||||
|
self.inputs = {'X': x}
|
||||||
|
self.attrs = {'axis': self.axis}
|
||||||
|
self.outputs = {'Indices': self.indices, 'Out': self.out}
|
||||||
|
|
||||||
|
def init_axis(self):
|
||||||
|
self.axis = -1
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
|
||||||
|
class TestArgsortOpAxis0(TestArgsortOp):
|
||||||
|
def init_axis(self):
|
||||||
|
self.axis = 0
|
||||||
|
|
||||||
|
|
||||||
|
class TestArgsortOpAxis1(TestArgsortOp):
|
||||||
|
def init_axis(self):
|
||||||
|
self.axis = 1
|
||||||
|
|
||||||
|
|
||||||
|
class TestArgsortOpAxisNeg2(TestArgsortOp):
|
||||||
|
def init_axis(self):
|
||||||
|
self.axis = -2
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue