parent
e0b48f7e29
commit
60a4f69b3c
@ -0,0 +1,104 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/distributed_ops/lookup_remote_table_op.h"
|
||||||
|
#include "paddle/fluid/framework/var_type_inference.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class LookupRemoteTableOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("W"),
|
||||||
|
"Input(W) of LookupRemoteTableOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Ids"),
|
||||||
|
"Input(Ids) of LookupRemoteTableOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||||
|
"Output(Out) of LookupRemoteTableOp should not be null.");
|
||||||
|
|
||||||
|
auto table_dims = ctx->GetInputDim("W");
|
||||||
|
auto ids_dims = ctx->GetInputDim("Ids");
|
||||||
|
int ids_rank = ids_dims.size();
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(table_dims.size(), 2);
|
||||||
|
PADDLE_ENFORCE_EQ(ids_dims[ids_rank - 1], 1,
|
||||||
|
"The last dimension of the 'Ids' tensor must be 1.");
|
||||||
|
|
||||||
|
auto output_dims =
|
||||||
|
framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
|
||||||
|
output_dims.push_back(table_dims[1]);
|
||||||
|
ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
|
||||||
|
|
||||||
|
if (ctx->GetOutputsVarType("Out")[0] ==
|
||||||
|
framework::proto::VarType::LOD_TENSOR) {
|
||||||
|
ctx->ShareLoD("Ids", /*->*/ "Out");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
framework::OpKernelType GetExpectedKernelType(
|
||||||
|
const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
|
||||||
|
return framework::OpKernelType(data_type, ctx.device_context());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class LookupRemoteTableOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
void Make() override {
|
||||||
|
AddInput("W",
|
||||||
|
"(Tensor) The input represents embedding tensors, "
|
||||||
|
"which is a learnable parameter.");
|
||||||
|
AddInput("Ids",
|
||||||
|
"An input with type int32 or int64 "
|
||||||
|
"contains the ids to be looked up in W. "
|
||||||
|
"The last dimension size must be 1.");
|
||||||
|
AddOutput("Out", "The lookup results, which have the same type as W.");
|
||||||
|
AddAttr<int64_t>("padding_idx",
|
||||||
|
"(int64, default -1) "
|
||||||
|
"If the value is -1, it makes no effect to lookup. "
|
||||||
|
"Otherwise the given value indicates padding the output "
|
||||||
|
"with zeros whenever lookup encounters it in Ids.")
|
||||||
|
.SetDefault(kNoPadding);
|
||||||
|
// NOTE(minqiyang): grad_inplace is an temporal attribute,
|
||||||
|
// please do NOT set this attribute in python layer.
|
||||||
|
AddAttr<bool>("grad_inplace",
|
||||||
|
"(boolean, default false) "
|
||||||
|
"If the grad op reuse the input's variable.")
|
||||||
|
.SetDefault(false);
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Lookup Remote Table Operator.
|
||||||
|
|
||||||
|
This operator is used to perform lookups on the parameter W,
|
||||||
|
then concatenated into a dense tensor.
|
||||||
|
|
||||||
|
The input Ids can carry the LoD (Level of Details) information,
|
||||||
|
or not. And the output only shares the LoD information with input Ids.
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OPERATOR(lookup_remote_table, ops::LookupRemoteTableOp,
|
||||||
|
ops::EmptyGradOpMaker, ops::LookupRemoteTableOpMaker);
|
||||||
|
|
||||||
|
REGISTER_OP_CPU_KERNEL(lookup_remote_table, ops::LookupRemoteTableKernel<float>,
|
||||||
|
ops::LookupRemoteTableKernel<double>);
|
Loading…
Reference in new issue