add gpu Implementation

revert-12469-sum_op_dim_fix
tangwei12 7 years ago
parent 4661f5589d
commit 60dda7bf9f

@ -25,7 +25,7 @@ namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
template <typename DeviceContext, typename T> template <typename T>
class SamplingIdKernel : public framework::OpKernel<T> { class SamplingIdKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
@ -48,7 +48,7 @@ class SamplingIdKernel : public framework::OpKernel<T> {
std::vector<T> ids(batch_size); std::vector<T> ids(batch_size);
for (size_t i = 0; i < batch_size; ++i) { for (size_t i = 0; i < batch_size; ++i) {
double r = dist(engine); T r = dist(engine);
int idx = width - 1; int idx = width - 1;
for (int j = 0; j < width; ++j) { for (int j = 0; j < width; ++j) {
if ((r -= ins_vector[i * width + j]) < 0) { if ((r -= ins_vector[i * width + j]) < 0) {

@ -0,0 +1,87 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
template <typename T>
struct UniformGenerator {
T min_, max_;
unsigned int seed_;
__host__ __device__ UniformGenerator(T min, T max, int seed)
: min_(min), max_(max), seed_(seed) {}
__host__ __device__ T operator()(const unsigned int n) const {
thrust::minstd_rand rng;
rng.seed(seed_);
thrust::uniform_real_distribution<T> dist(min_, max_);
rng.discard(n);
return dist(rng);
}
};
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class SamplingIdKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("X");
const int batch_size = static_cast<int>(input->dims()[0]);
const int width = static_cast<int>(input->dims()[1]);
std::vector<T> ins_vector;
framework::TensorToVector(*input, context.device_context(), &ins_vector);
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
if (seed == 0) {
std::random_device rd;
seed = rd();
}
T min = static_cast<T>(context.Attr<float>("min"));
T max = static_cast<T>(context.Attr<float>("max"));
std::vector<T> ids(batch_size);
for (size_t i = 0; i < batch_size; ++i) {
T r = UniformGenerator<T>(min, max, seed);
int idx = width - 1;
for (int j = 0; j < width; ++j) {
if ((r -= ins_vector[i * width + j]) < 0) {
idx = j;
break;
}
}
ids[i] = ins_vector[i * width + idx];
}
std::vector<int64_t> out_dim;
out_dim.push_back(static_cast<int64_t>(batch_size));
Tensor* output = context.Output<Tensor>("Out");
output->Resize(framework::make_ddim(out_dim));
output->mutable_data<T>(context.GetPlace());
framework::TensorFromVector(ids, context.device_context(), output);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CPU_KERNEL(sampling_id, paddle::operators::SamplingIdKernel<float>,
paddle::operators::SamplingIdKernel<double>);
Loading…
Cancel
Save