parent
4661f5589d
commit
60dda7bf9f
@ -0,0 +1,87 @@
|
|||||||
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
#include <thrust/random.h>
|
||||||
|
#include <thrust/transform.h>
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
#include "paddle/fluid/framework/operator.h"
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct UniformGenerator {
|
||||||
|
T min_, max_;
|
||||||
|
unsigned int seed_;
|
||||||
|
|
||||||
|
__host__ __device__ UniformGenerator(T min, T max, int seed)
|
||||||
|
: min_(min), max_(max), seed_(seed) {}
|
||||||
|
|
||||||
|
__host__ __device__ T operator()(const unsigned int n) const {
|
||||||
|
thrust::minstd_rand rng;
|
||||||
|
rng.seed(seed_);
|
||||||
|
thrust::uniform_real_distribution<T> dist(min_, max_);
|
||||||
|
rng.discard(n);
|
||||||
|
return dist(rng);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class SamplingIdKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
const Tensor* input = context.Input<Tensor>("X");
|
||||||
|
const int batch_size = static_cast<int>(input->dims()[0]);
|
||||||
|
const int width = static_cast<int>(input->dims()[1]);
|
||||||
|
|
||||||
|
std::vector<T> ins_vector;
|
||||||
|
framework::TensorToVector(*input, context.device_context(), &ins_vector);
|
||||||
|
|
||||||
|
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
|
||||||
|
if (seed == 0) {
|
||||||
|
std::random_device rd;
|
||||||
|
seed = rd();
|
||||||
|
}
|
||||||
|
T min = static_cast<T>(context.Attr<float>("min"));
|
||||||
|
T max = static_cast<T>(context.Attr<float>("max"));
|
||||||
|
|
||||||
|
std::vector<T> ids(batch_size);
|
||||||
|
for (size_t i = 0; i < batch_size; ++i) {
|
||||||
|
T r = UniformGenerator<T>(min, max, seed);
|
||||||
|
int idx = width - 1;
|
||||||
|
for (int j = 0; j < width; ++j) {
|
||||||
|
if ((r -= ins_vector[i * width + j]) < 0) {
|
||||||
|
idx = j;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ids[i] = ins_vector[i * width + idx];
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<int64_t> out_dim;
|
||||||
|
out_dim.push_back(static_cast<int64_t>(batch_size));
|
||||||
|
|
||||||
|
Tensor* output = context.Output<Tensor>("Out");
|
||||||
|
output->Resize(framework::make_ddim(out_dim));
|
||||||
|
output->mutable_data<T>(context.GetPlace());
|
||||||
|
framework::TensorFromVector(ids, context.device_context(), output);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
REGISTER_OP_CPU_KERNEL(sampling_id, paddle::operators::SamplingIdKernel<float>,
|
||||||
|
paddle::operators::SamplingIdKernel<double>);
|
Loading…
Reference in new issue