|
|
|
@ -17,14 +17,14 @@ backward_net = None
|
|
|
|
|
optimize_net = core.Net.create()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def atom_id():
|
|
|
|
|
def atomic_id():
|
|
|
|
|
id = 0
|
|
|
|
|
while True:
|
|
|
|
|
yield id
|
|
|
|
|
id += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uniq_id = atom_id().next
|
|
|
|
|
uniq_id = atomic_id().next
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def data_layer(name, dims):
|
|
|
|
@ -164,7 +164,7 @@ def set_cost(cost):
|
|
|
|
|
cost_grad.set(numpy.ones(cost_shape).astype("float32"), place)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mean_cost(cost):
|
|
|
|
|
def get_cost_mean(cost):
|
|
|
|
|
cost_data = numpy.array(scope.find_var(cost).get_tensor())
|
|
|
|
|
return cost_data.sum() / len(cost_data)
|
|
|
|
|
|
|
|
|
@ -217,7 +217,7 @@ def test(cost_name):
|
|
|
|
|
|
|
|
|
|
forward_net.infer_shape(scope)
|
|
|
|
|
forward_net.run(scope, dev_ctx)
|
|
|
|
|
cost.append(mean_cost(cost_name))
|
|
|
|
|
cost.append(get_cost_mean(cost_name))
|
|
|
|
|
error.append(error_rate(predict, "label"))
|
|
|
|
|
print("cost=" + str(sum(cost) / float(len(cost))) + " error_rate=" + str(
|
|
|
|
|
sum(error) / float(len(error))))
|
|
|
|
|