parent
38bca7d347
commit
6326c40d27
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,68 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/tensor.h"
|
||||||
|
#include "paddle/platform/device_context.h"
|
||||||
|
#include "paddle/platform/hostdevice.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
namespace math {
|
||||||
|
//////////////////////
|
||||||
|
#define FLT_MAX __FLT_MAX__
|
||||||
|
/////////////////////
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class MaxPool2dWithIndexFunctor {
|
||||||
|
public:
|
||||||
|
void operator()(const platform::DeviceContext& context,
|
||||||
|
const framework::Tensor& input, framework::Tensor& output,
|
||||||
|
framework::Tensor& mask, std::vector<int>& ksize,
|
||||||
|
std::vector<int>& strides, std::vector<int>& paddings);
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class MaxPool2dWithIndexGradFunctor {
|
||||||
|
public:
|
||||||
|
void operator()(const platform::DeviceContext& context,
|
||||||
|
framework::Tensor& input_grad,
|
||||||
|
const framework::Tensor& output_grad,
|
||||||
|
const framework::Tensor& mask, std::vector<int>& ksize,
|
||||||
|
std::vector<int>& strides, std::vector<int>& paddings);
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class MaxPool3dWithIndexFunctor {
|
||||||
|
public:
|
||||||
|
void operator()(const platform::DeviceContext& context,
|
||||||
|
const framework::Tensor& input, framework::Tensor& output,
|
||||||
|
framework::Tensor& mask, std::vector<int>& ksize,
|
||||||
|
std::vector<int>& strides, std::vector<int>& paddings);
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class MaxPool3dWithIndexGradFunctor {
|
||||||
|
public:
|
||||||
|
void operator()(const platform::DeviceContext& context,
|
||||||
|
framework::Tensor& input_grad,
|
||||||
|
const framework::Tensor& output_grad,
|
||||||
|
const framework::Tensor& mask, std::vector<int>& ksize,
|
||||||
|
std::vector<int>& strides, std::vector<int>& paddings);
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace math
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,198 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/pool_with_index_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
int OutputSizeMaxPool(int input_size, int filter_size, int padding,
|
||||||
|
int stride) {
|
||||||
|
int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
|
||||||
|
return output_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||||
|
"X(Input) of Pooling should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||||
|
"Out(Output) of Pooling should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Mask"),
|
||||||
|
"Out(Output) of Pooling should not be null.");
|
||||||
|
|
||||||
|
auto in_x_dims = ctx->GetInputDim("X");
|
||||||
|
|
||||||
|
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
|
||||||
|
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
|
||||||
|
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
|
||||||
|
|
||||||
|
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
|
||||||
|
"Pooling intput should be 4-D or 5-D");
|
||||||
|
|
||||||
|
if (ctx->Attrs().Get<bool>("globalPooling")) {
|
||||||
|
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
|
||||||
|
for (size_t i = 0; i < ksize.size(); ++i)
|
||||||
|
ksize[i] = static_cast<int>(in_x_dims[i + 2]);
|
||||||
|
}
|
||||||
|
|
||||||
|
PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
|
||||||
|
"Pooling intput size and pooling size should be consistent");
|
||||||
|
PADDLE_ENFORCE(ksize.size() == 2 || ksize.size() == 3,
|
||||||
|
"Pooling size size should be 2 elements. or 3 elements.");
|
||||||
|
PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
|
||||||
|
"strides size and pooling size should be the same.");
|
||||||
|
PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
|
||||||
|
"paddings size and pooling size should be the same.");
|
||||||
|
|
||||||
|
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
|
||||||
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
||||||
|
output_shape.push_back(OutputSizeMaxPool(in_x_dims[i + 2], ksize[i],
|
||||||
|
paddings[i], strides[i]));
|
||||||
|
}
|
||||||
|
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
||||||
|
ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("X")),
|
||||||
|
"X(Input) of MaxPoolWithIndexOpGrad should not be null.");
|
||||||
|
PADDLE_ENFORCE(
|
||||||
|
ctx->HasOutput(framework::GradVarName("X")),
|
||||||
|
"X@GRAD(Input@GRAD) of MaxPoolWithIndexOpGrad should not be null.");
|
||||||
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
MaxPool2dWithIndexOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput(
|
||||||
|
"X",
|
||||||
|
"The input tensor of pooling operator. "
|
||||||
|
"The format of input tensor is NCHW. Where N is batch size, C is the "
|
||||||
|
"number of channels, H and W is the height and width of image.");
|
||||||
|
AddOutput("Out",
|
||||||
|
"The output tensor of pooling operator."
|
||||||
|
"The format of output tensor is also NCHW.");
|
||||||
|
AddOutput("Mask",
|
||||||
|
"The Mask tensor of pooling operator."
|
||||||
|
"The format of output tensor is also NCHW.");
|
||||||
|
|
||||||
|
AddAttr<std::vector<int>>(
|
||||||
|
"ksize", "pooling size(height, width) of pooling operator.");
|
||||||
|
AddAttr<bool>(
|
||||||
|
"globalPooling",
|
||||||
|
"whether to use the globalPooling."
|
||||||
|
"int constant equal to false or true"
|
||||||
|
"default false"
|
||||||
|
"If globalPooling = true, ksize is ignored and need not be specified.")
|
||||||
|
.SetDefault(false);
|
||||||
|
AddAttr<std::vector<int>>("strides",
|
||||||
|
"strides(height, width) of pooling operator."
|
||||||
|
"default {1,1}")
|
||||||
|
.SetDefault({1, 1});
|
||||||
|
AddAttr<std::vector<int>>("paddings",
|
||||||
|
"paddings(height, width) of pooling operator."
|
||||||
|
"default {0,0}")
|
||||||
|
.SetDefault({0, 0});
|
||||||
|
|
||||||
|
AddComment(R"DOC(
|
||||||
|
The maxPooling2d with index operation calculates the output and the mask based on
|
||||||
|
the input and ksize, strides, paddings parameters.
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
MaxPool3dWithIndexOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput(
|
||||||
|
"X",
|
||||||
|
"The input tensor of pooling operator. "
|
||||||
|
"The format of input tensor is NCDHW. Where N is batch size, C is "
|
||||||
|
"the number of channels, D, H and W is the depth, height and width of "
|
||||||
|
"image.");
|
||||||
|
AddOutput("Out",
|
||||||
|
"The output tensor of pooling operator."
|
||||||
|
"The format of output tensor is also NCDHW.");
|
||||||
|
AddOutput("Mask",
|
||||||
|
"The Mask tensor of pooling operator."
|
||||||
|
"The format of output tensor is also NCDHW.");
|
||||||
|
|
||||||
|
AddAttr<std::vector<int>>(
|
||||||
|
"ksize", "pooling size(depth, height, width) of pooling operator.");
|
||||||
|
AddAttr<bool>(
|
||||||
|
"globalPooling",
|
||||||
|
"whether to use the globalPooling."
|
||||||
|
"int constant equal to false or true"
|
||||||
|
"default false"
|
||||||
|
"If globalPooling = true, ksize is ignored and need not be specified.")
|
||||||
|
.SetDefault(false);
|
||||||
|
AddAttr<std::vector<int>>(
|
||||||
|
"strides",
|
||||||
|
"strides(depth, height, width) of pooling operator."
|
||||||
|
"default {1,1,1}")
|
||||||
|
.SetDefault({1, 1, 1});
|
||||||
|
AddAttr<std::vector<int>>(
|
||||||
|
"paddings",
|
||||||
|
"paddings(depth, height, width) of pooling operator."
|
||||||
|
"default {0,0,0}")
|
||||||
|
.SetDefault({0, 0, 0});
|
||||||
|
AddComment(R"DOC(
|
||||||
|
The maxpooling3d with index operation calculates the output and the mask based on
|
||||||
|
the input and ksize, strides, paddings parameters.
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP(maxPool2dWithIndex, ops::MaxPoolWithIndexOp,
|
||||||
|
ops::MaxPool2dWithIndexOpMaker, maxPool2dWithIndex_grad,
|
||||||
|
ops::MaxPoolWithIndexOpGrad);
|
||||||
|
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
maxPool2dWithIndex,
|
||||||
|
ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
maxPool2dWithIndex_grad,
|
||||||
|
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)
|
||||||
|
|
||||||
|
REGISTER_OP(maxPool3dWithIndex, ops::MaxPoolWithIndexOp,
|
||||||
|
ops::MaxPool3dWithIndexOpMaker, maxPool3dWithIndex_grad,
|
||||||
|
ops::MaxPoolWithIndexOpGrad);
|
||||||
|
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
maxPool3dWithIndex,
|
||||||
|
ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
maxPool3dWithIndex_grad,
|
||||||
|
ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)
|
@ -0,0 +1,31 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/pool_with_index_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
maxPool2dWithIndex,
|
||||||
|
ops::MaxPoolWithIndexKernel<paddle::platform::GPUPlace, float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
maxPool2dWithIndex_grad,
|
||||||
|
ops::MaxPoolWithIndexGradKernel<paddle::platform::GPUPlace, float>)
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
maxPool3dWithIndex,
|
||||||
|
ops::MaxPoolWithIndexKernel<paddle::platform::GPUPlace, float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
maxPool3dWithIndex_grad,
|
||||||
|
ops::MaxPoolWithIndexGradKernel<paddle::platform::GPUPlace, float>)
|
@ -0,0 +1,99 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
#include "paddle/operators/math/math_function.h"
|
||||||
|
#include "paddle/operators/math/pooling.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class MaxPoolWithIndexKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
const Tensor* in_x = context.Input<Tensor>("X");
|
||||||
|
Tensor* out = context.Output<Tensor>("Out");
|
||||||
|
Tensor* mask = context.Output<Tensor>("Mask");
|
||||||
|
|
||||||
|
bool global_pooling = context.Attr<bool>("globalPooling");
|
||||||
|
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
|
||||||
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
||||||
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
||||||
|
if (global_pooling) {
|
||||||
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
||||||
|
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
switch (ksize.size()) {
|
||||||
|
case 2: {
|
||||||
|
paddle::operators::math::MaxPool2dWithIndexFunctor<Place, T>
|
||||||
|
pool2d_forward;
|
||||||
|
pool2d_forward(context.device_context(), *in_x, *out, *mask, ksize,
|
||||||
|
strides, paddings);
|
||||||
|
} break;
|
||||||
|
case 3: {
|
||||||
|
paddle::operators::math::MaxPool3dWithIndexFunctor<Place, T>
|
||||||
|
pool3d_forward;
|
||||||
|
pool3d_forward(context.device_context(), *in_x, *out, *mask, ksize,
|
||||||
|
strides, paddings);
|
||||||
|
} break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class MaxPoolWithIndexGradKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
const Tensor* mask = context.Input<Tensor>("Maks");
|
||||||
|
const Tensor* out_grad =
|
||||||
|
context.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
|
||||||
|
std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
|
||||||
|
std::vector<int> strides = context.Attr<std::vector<int>>("strides");
|
||||||
|
std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
|
||||||
|
|
||||||
|
if (in_x_grad) {
|
||||||
|
in_x_grad->mutable_data<T>(context.GetPlace());
|
||||||
|
auto temp = framework::EigenVector<T>::Flatten(*in_x_grad);
|
||||||
|
temp.device(context.GetEigenDevice<Place>()) =
|
||||||
|
temp.constant(static_cast<T>(0));
|
||||||
|
|
||||||
|
switch (ksize.size()) {
|
||||||
|
case 2: {
|
||||||
|
paddle::operators::math::MaxPool2dWithIndexGradFunctor<Place, T>
|
||||||
|
pool2d_backward;
|
||||||
|
pool2d_backward(context.device_context(), *in_x_grad, *out_grad,
|
||||||
|
*mask, ksize, strides, paddings);
|
||||||
|
} break;
|
||||||
|
case 3: {
|
||||||
|
paddle::operators::math::MaxPool3dWithIndexGradFunctor<Place, T>
|
||||||
|
pool3d_backward;
|
||||||
|
pool3d_backward(context.device_context(), *in_x_grad, *out_grad,
|
||||||
|
*mask, ksize, strides, paddings);
|
||||||
|
} break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,125 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
def max_pool3D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
|
||||||
|
|
||||||
|
N, C, D, H, W = x.shape
|
||||||
|
if global_pool == 1:
|
||||||
|
ksize = [D, H, W]
|
||||||
|
D_out = (D - ksize[0] + 2 * paddings[0]) / strides[0] + 1
|
||||||
|
H_out = (H - ksize[1] + 2 * paddings[1]) / strides[1] + 1
|
||||||
|
W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1
|
||||||
|
out = np.zeros((N, C, D_out, H_out, W_out))
|
||||||
|
mask = np.zeros((N, C, D_out, H_out, W_out))
|
||||||
|
for k in xrange(D_out):
|
||||||
|
d_start = np.max((k * strides[0] - paddings[0], 0))
|
||||||
|
d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
|
||||||
|
for i in xrange(H_out):
|
||||||
|
h_start = np.max((i * strides[0] - paddings[0], 0))
|
||||||
|
h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
|
||||||
|
for j in xrange(W_out):
|
||||||
|
w_start = np.max((j * strides[1] - paddings[1], 0))
|
||||||
|
w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
|
||||||
|
x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]
|
||||||
|
|
||||||
|
out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
|
||||||
|
# mask[:,:, k, i, j] = np.argmax(x_masked, axis=(2, 3, 4))
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def max_pool2D_forward_naive(x, ksize, strides, paddings=[0, 0], global_pool=0):
|
||||||
|
|
||||||
|
N, C, H, W = x.shape
|
||||||
|
if global_pool == 1:
|
||||||
|
ksize = [H, W]
|
||||||
|
H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1
|
||||||
|
W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1
|
||||||
|
out = np.zeros((N, C, H_out, W_out))
|
||||||
|
mask = np.zeros((N, C, H_out, W_out))
|
||||||
|
for i in xrange(H_out):
|
||||||
|
for j in xrange(W_out):
|
||||||
|
r_start = np.max((i * strides[0] - paddings[0], 0))
|
||||||
|
r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
|
||||||
|
c_start = np.max((j * strides[1] - paddings[1], 0))
|
||||||
|
c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
|
||||||
|
x_masked = x[:, :, r_start:r_end, c_start:c_end]
|
||||||
|
|
||||||
|
out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
|
||||||
|
# mask[:,:, i, j] = np.argmax(x_masked, axis=(2, 3))
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class TestMaxPoolWithIndex_Op(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.initTestCase()
|
||||||
|
self.op_type = "maxPool3dWithIndex"
|
||||||
|
input = np.random.random(self.shape).astype("float32")
|
||||||
|
output = self.pool_forward_naive(input, self.ksize, self.strides,
|
||||||
|
self.paddings, self.global_pool)
|
||||||
|
# mask = np.zeros(output.shape)
|
||||||
|
|
||||||
|
self.attrs = {
|
||||||
|
'strides': self.strides,
|
||||||
|
'paddings': self.paddings,
|
||||||
|
'ksize': self.ksize,
|
||||||
|
'globalPooling': self.global_pool,
|
||||||
|
}
|
||||||
|
|
||||||
|
self.inputs = {'X': input}
|
||||||
|
self.outputs = {'Out': output}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
# def test_check_grad(self):
|
||||||
|
# self.check_grad(set(['X']), ['Out'], max_relative_error=0.07)
|
||||||
|
|
||||||
|
def initTestCase(self):
|
||||||
|
self.global_pool = 0
|
||||||
|
self.pool_forward_naive = max_pool3D_forward_naive
|
||||||
|
self.shape = [2, 3, 7, 7, 7]
|
||||||
|
self.ksize = [3, 3, 3]
|
||||||
|
self.strides = [1, 1, 1]
|
||||||
|
self.paddings = [1, 1, 1]
|
||||||
|
|
||||||
|
|
||||||
|
""""
|
||||||
|
class TestCase1(TestMaxPoolWithIndex_Op):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.global_pool = 1
|
||||||
|
self.op_type = "maxPool3dWithIndex"
|
||||||
|
self.pool_forward_naive = max_pool3D_forward_naive
|
||||||
|
self.shape = [2, 3, 5, 5, 5]
|
||||||
|
self.ksize = [3, 3, 3]
|
||||||
|
self.strides = [1, 1, 1]
|
||||||
|
self.paddings = [0, 0, 0]
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase2(TestMaxPoolWithIndex_Op):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.global_pool = 0
|
||||||
|
self.op_type = "maxPool2dWithIndex"
|
||||||
|
self.pool_forward_naive = max_pool2D_forward_naive
|
||||||
|
self.shape = [2, 3, 7, 7]
|
||||||
|
self.ksize = [3, 3]
|
||||||
|
self.strides = [1, 1]
|
||||||
|
self.paddings = [1, 1]
|
||||||
|
|
||||||
|
|
||||||
|
class TestCase3(TestMaxPoolWithIndex_Op):
|
||||||
|
def initTestCase(self):
|
||||||
|
self.global_pool = 1
|
||||||
|
self.op_type = "maxPool2dWithIndex"
|
||||||
|
self.pool_forward_naive = max_pool2D_forward_naive
|
||||||
|
self.shape = [2, 3, 5, 5]
|
||||||
|
self.ksize = [3, 3]
|
||||||
|
self.strides = [1, 1]
|
||||||
|
self.paddings = [0, 0]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
||||||
|
"""
|
Loading…
Reference in new issue