parent
3d28291d69
commit
632ad5c9e2
@ -1,3 +1,7 @@
|
|||||||
add_test(NAME test_v2_layer
|
add_test(NAME test_v2_layer
|
||||||
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
|
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
|
||||||
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py
|
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_layer.py)
|
||||||
|
|
||||||
|
add_test(NAME test_v2_rnn_layer
|
||||||
|
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
|
||||||
|
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_rnn_layer.py)
|
||||||
|
@ -0,0 +1,143 @@
|
|||||||
|
# Copyright PaddlePaddle contributors. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import difflib
|
||||||
|
import unittest
|
||||||
|
|
||||||
|
import paddle.trainer_config_helpers as conf_helps
|
||||||
|
import paddle.v2.activation as activation
|
||||||
|
import paddle.v2.data_type as data_type
|
||||||
|
import paddle.v2.layer as layer
|
||||||
|
from paddle.trainer_config_helpers.config_parser_utils import \
|
||||||
|
parse_network_config as parse_network
|
||||||
|
|
||||||
|
|
||||||
|
class RNNTest(unittest.TestCase):
|
||||||
|
def test_simple_rnn(self):
|
||||||
|
dict_dim = 10
|
||||||
|
word_dim = 8
|
||||||
|
hidden_dim = 8
|
||||||
|
|
||||||
|
def parse_old_rnn():
|
||||||
|
def step(y):
|
||||||
|
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
|
||||||
|
out = conf_helps.fc_layer(
|
||||||
|
input=[y, mem],
|
||||||
|
size=hidden_dim,
|
||||||
|
act=activation.Tanh(),
|
||||||
|
bias_attr=True,
|
||||||
|
name="rnn_state")
|
||||||
|
return out
|
||||||
|
|
||||||
|
def test():
|
||||||
|
data = conf_helps.data_layer(name="word", size=dict_dim)
|
||||||
|
embd = conf_helps.embedding_layer(input=data, size=word_dim)
|
||||||
|
conf_helps.recurrent_group(name="rnn", step=step, input=embd)
|
||||||
|
|
||||||
|
return str(parse_network(test))
|
||||||
|
|
||||||
|
def parse_new_rnn():
|
||||||
|
def new_step(y):
|
||||||
|
mem = layer.memory(name="rnn_state", size=hidden_dim)
|
||||||
|
out = layer.fc(input=[y, mem],
|
||||||
|
size=hidden_dim,
|
||||||
|
act=activation.Tanh(),
|
||||||
|
bias_attr=True,
|
||||||
|
name="rnn_state")
|
||||||
|
return out
|
||||||
|
|
||||||
|
data = layer.data(
|
||||||
|
name="word", type=data_type.integer_value(dict_dim))
|
||||||
|
embd = layer.embedding(input=data, size=word_dim)
|
||||||
|
rnn_layer = layer.recurrent_group(
|
||||||
|
name="rnn", step=new_step, input=embd)
|
||||||
|
return str(layer.parse_network(rnn_layer))
|
||||||
|
|
||||||
|
diff = difflib.unified_diff(parse_old_rnn().splitlines(1),
|
||||||
|
parse_new_rnn().splitlines(1))
|
||||||
|
print ''.join(diff)
|
||||||
|
|
||||||
|
def test_sequence_rnn_multi_input(self):
|
||||||
|
dict_dim = 10
|
||||||
|
word_dim = 8
|
||||||
|
hidden_dim = 8
|
||||||
|
label_dim = 3
|
||||||
|
|
||||||
|
def parse_old_rnn():
|
||||||
|
def step(y, wid):
|
||||||
|
z = conf_helps.embedding_layer(input=wid, size=word_dim)
|
||||||
|
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
|
||||||
|
out = conf_helps.fc_layer(
|
||||||
|
input=[y, z, mem],
|
||||||
|
size=hidden_dim,
|
||||||
|
act=conf_helps.TanhActivation(),
|
||||||
|
bias_attr=True,
|
||||||
|
name="rnn_state")
|
||||||
|
return out
|
||||||
|
|
||||||
|
def test():
|
||||||
|
data = conf_helps.data_layer(name="word", size=dict_dim)
|
||||||
|
label = conf_helps.data_layer(name="label", size=label_dim)
|
||||||
|
emb = conf_helps.embedding_layer(input=data, size=word_dim)
|
||||||
|
out = conf_helps.recurrent_group(
|
||||||
|
name="rnn", step=step, input=[emb, data])
|
||||||
|
|
||||||
|
rep = conf_helps.last_seq(input=out)
|
||||||
|
prob = conf_helps.fc_layer(
|
||||||
|
size=label_dim,
|
||||||
|
input=rep,
|
||||||
|
act=conf_helps.SoftmaxActivation(),
|
||||||
|
bias_attr=True)
|
||||||
|
|
||||||
|
conf_helps.outputs(
|
||||||
|
conf_helps.classification_cost(
|
||||||
|
input=prob, label=label))
|
||||||
|
|
||||||
|
return str(parse_network(test))
|
||||||
|
|
||||||
|
def parse_new_rnn():
|
||||||
|
def step(y, wid):
|
||||||
|
z = layer.embedding(input=wid, size=word_dim)
|
||||||
|
mem = layer.memory(name="rnn_state", size=hidden_dim)
|
||||||
|
out = layer.fc(input=[y, z, mem],
|
||||||
|
size=hidden_dim,
|
||||||
|
act=activation.Tanh(),
|
||||||
|
bias_attr=True,
|
||||||
|
name="rnn_state")
|
||||||
|
return out
|
||||||
|
|
||||||
|
data = layer.data(
|
||||||
|
name="word", type=data_type.dense_vector(dict_dim))
|
||||||
|
label = layer.data(
|
||||||
|
name="label", type=data_type.dense_vector(label_dim))
|
||||||
|
emb = layer.embedding(input=data, size=word_dim)
|
||||||
|
out = layer.recurrent_group(
|
||||||
|
name="rnn", step=step, input=[emb, data])
|
||||||
|
|
||||||
|
rep = layer.last_seq(input=out)
|
||||||
|
prob = layer.fc(size=label_dim,
|
||||||
|
input=rep,
|
||||||
|
act=activation.Softmax(),
|
||||||
|
bias_attr=True)
|
||||||
|
|
||||||
|
cost = layer.classification_cost(input=prob, label=label)
|
||||||
|
|
||||||
|
return str(layer.parse_network(cost))
|
||||||
|
|
||||||
|
diff = difflib.unified_diff(parse_old_rnn().splitlines(1),
|
||||||
|
parse_new_rnn().splitlines(1))
|
||||||
|
print ''.join(diff)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue