parent
131e4a3b5f
commit
6477b443f3
@ -0,0 +1,145 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
|
||||
import six
|
||||
import unittest
|
||||
import time
|
||||
import math
|
||||
import multiprocessing
|
||||
|
||||
import paddle
|
||||
import paddle.fluid.core as core
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import compiler
|
||||
|
||||
# open eager delete mode
|
||||
os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
|
||||
os.environ['FLAGS_fast_eager_deletion_mode'] = 'true'
|
||||
os.environ['CPU_NUM'] = '2'
|
||||
|
||||
|
||||
class BuildIrMemOptBase(unittest.TestCase):
|
||||
def check_network_convergence(self,
|
||||
network,
|
||||
use_cuda=True,
|
||||
memory_opt=True,
|
||||
use_ir_memory_optimize=True,
|
||||
enable_inplace=True,
|
||||
iter=5):
|
||||
if use_cuda and not core.is_compiled_with_cuda():
|
||||
print('Skip use_cuda=True because Paddle is not compiled with cuda')
|
||||
return
|
||||
|
||||
if os.name == 'nt':
|
||||
print(
|
||||
'Skip use_parallel_executor=True because Paddle comes without parallel support on windows'
|
||||
)
|
||||
return
|
||||
batch_size = 32
|
||||
batch_size *= fluid.core.get_cuda_device_count() if use_cuda else int(
|
||||
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
|
||||
|
||||
# build network
|
||||
word_dict = paddle.dataset.imdb.word_dict()
|
||||
train_reader = paddle.batch(
|
||||
paddle.dataset.imdb.train(word_dict), batch_size=batch_size)
|
||||
|
||||
data = fluid.layers.data(
|
||||
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||
|
||||
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||
|
||||
cost = network(data, label, len(word_dict))
|
||||
optimizer = fluid.optimizer.Adam(learning_rate=0.2)
|
||||
optimizer.minimize(cost)
|
||||
if memory_opt:
|
||||
fluid.memory_optimize(main)
|
||||
|
||||
# execution
|
||||
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
|
||||
reader = feeder.decorate_reader(train_reader, multi_devices=True)
|
||||
exe = fluid.Executor(place)
|
||||
fluid.default_startup_program().random_seed = 1
|
||||
fluid.default_main_program().random_seed = 1
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
train_cp = compiler.CompiledProgram(fluid.default_main_program())
|
||||
train_cp = train_cp.with_data_parallel(loss_name=cost.name)
|
||||
fetch_list = [cost.name]
|
||||
|
||||
begin = time.time()
|
||||
first_loss, last_loss = None, None
|
||||
step_id = 0
|
||||
custom_iter = getattr(self, "iter")
|
||||
if not custom_iter == None:
|
||||
iter = custom_iter
|
||||
for data in reader():
|
||||
ret = exe.run(train_cp, feed=data, fetch_list=fetch_list)
|
||||
print(ret)
|
||||
step_id += 1
|
||||
if step_id == 0:
|
||||
first_loss = res[0]
|
||||
if step_id == iter:
|
||||
last_loss = res[0]
|
||||
break
|
||||
end = time.time()
|
||||
|
||||
print("%.4f Instance per second" % (
|
||||
(batch_size * iter) / (end - begin)))
|
||||
|
||||
avg_last_loss_val = np.array(last_loss).mean()
|
||||
avg_first_loss_val = np.array(first_loss).mean()
|
||||
if math.isnan(float(avg_last_loss_val)) or math.isnan(
|
||||
float(avg_first_loss_val)):
|
||||
sys.exit("got NaN loss, training failed.")
|
||||
|
||||
print(first_loss, last_loss)
|
||||
return first_loss, last_loss
|
||||
|
||||
|
||||
class TestIrMemOptBase(BuildIrMemOptBase):
|
||||
def setUp(self):
|
||||
self.network = None
|
||||
|
||||
def test_network(self):
|
||||
if self.network is None:
|
||||
return
|
||||
|
||||
baseline_first_loss, baseline_last_loss = None, None
|
||||
for use_cuda in [True, False]:
|
||||
for use_python_mem_opt in [True, False]:
|
||||
print(
|
||||
'network: {}, use_cuda: {}, use_python_mem_opt: {}, use_ir_mem_opt : {}'.
|
||||
format(self.network.__name__, use_cuda, use_python_mem_opt,
|
||||
not use_python_mem_opt))
|
||||
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
||||
with fluid.scope_guard(core.Scope()):
|
||||
if use_cuda is False and use_python_mem_opt is False:
|
||||
baseline_first_loss, baseline_last_loss = self.check_network_convergence(
|
||||
self.network,
|
||||
use_cuda=use_cuda,
|
||||
memory_opt=use_python_mem_opt)
|
||||
else:
|
||||
cur_first_loss, cur_last_loss = self.check_network_convergence(
|
||||
self.network,
|
||||
use_cuda=use_cuda,
|
||||
memory_opt=use_python_mem_opt)
|
||||
for loss in zip(baseline_first_loss,
|
||||
cur_first_loss):
|
||||
self.assertAlmostEqual(loss[0], loss[1], 1e-5)
|
||||
for loss in zip(baseline_last_loss, cur_last_loss):
|
||||
self.assertAlmostEqual(loss[0], loss[1], 1e-5)
|
@ -0,0 +1,55 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import unittest
|
||||
from ir_memory_optimize_net_base import TestIrMemOptBase
|
||||
from paddle.fluid.layers.control_flow import ConditionalBlock
|
||||
|
||||
|
||||
def lstm_net(data,
|
||||
label,
|
||||
dict_dim,
|
||||
emb_dim=128,
|
||||
hid_dim=128,
|
||||
hid_dim2=96,
|
||||
class_dim=2,
|
||||
emb_lr=30.0):
|
||||
emb = fluid.layers.embedding(
|
||||
input=data,
|
||||
size=[dict_dim, emb_dim],
|
||||
param_attr=fluid.ParamAttr(learning_rate=emb_lr))
|
||||
fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
|
||||
|
||||
lstm_h, c = fluid.layers.dynamic_lstm(
|
||||
input=fc0, size=hid_dim * 4, is_reverse=False)
|
||||
lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
|
||||
lstm_max_tanh = fluid.layers.tanh(lstm_max)
|
||||
fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
|
||||
prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
return avg_cost
|
||||
|
||||
|
||||
class TestIrMemOptRNN(TestIrMemOptBase):
|
||||
def setUp(self):
|
||||
self.network = lstm_net
|
||||
self.iter = 2
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,55 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# nlp model stack of op operate on lod. It's a classical test case in optimize pass.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import unittest
|
||||
from ir_memory_optimize_net_base import TestIrMemOptBase
|
||||
|
||||
|
||||
def lstm_net(data,
|
||||
label,
|
||||
dict_dim,
|
||||
emb_dim=128,
|
||||
hid_dim=128,
|
||||
hid_dim2=96,
|
||||
class_dim=2,
|
||||
emb_lr=30.0):
|
||||
emb = fluid.layers.embedding(
|
||||
input=data,
|
||||
size=[dict_dim, emb_dim],
|
||||
param_attr=fluid.ParamAttr(learning_rate=emb_lr))
|
||||
fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
|
||||
|
||||
lstm_h, c = fluid.layers.dynamic_lstm(
|
||||
input=fc0, size=hid_dim * 4, is_reverse=False)
|
||||
lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
|
||||
lstm_max_tanh = fluid.layers.tanh(lstm_max)
|
||||
fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
|
||||
prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
return avg_cost
|
||||
|
||||
|
||||
class TestIrMemOptRNN(TestIrMemOptBase):
|
||||
def setUp(self):
|
||||
self.network = lstm_net
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue