parent
3ecf6bb338
commit
668563088e
@ -0,0 +1,182 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace inference {
|
||||
using contrib::AnalysisConfig;
|
||||
|
||||
struct DataRecord {
|
||||
std::vector<std::vector<int64_t>> query_basic, query_phrase, title_basic,
|
||||
title_phrase;
|
||||
std::vector<size_t> lod1, lod2, lod3, lod4;
|
||||
size_t batch_iter{0}, batch_size{1}, num_samples; // total number of samples
|
||||
DataRecord() = default;
|
||||
explicit DataRecord(const std::string &path, int batch_size = 1)
|
||||
: batch_size(batch_size) {
|
||||
Load(path);
|
||||
}
|
||||
DataRecord NextBatch() {
|
||||
DataRecord data;
|
||||
size_t batch_end = batch_iter + batch_size;
|
||||
// NOTE skip the final batch, if no enough data is provided.
|
||||
if (batch_end <= query_basic.size()) {
|
||||
GetInputPerBatch(query_basic, &data.query_basic, &data.lod1, batch_iter,
|
||||
batch_end);
|
||||
GetInputPerBatch(query_phrase, &data.query_phrase, &data.lod2, batch_iter,
|
||||
batch_end);
|
||||
GetInputPerBatch(title_basic, &data.title_basic, &data.lod3, batch_iter,
|
||||
batch_end);
|
||||
GetInputPerBatch(title_phrase, &data.title_phrase, &data.lod4, batch_iter,
|
||||
batch_end);
|
||||
}
|
||||
batch_iter += batch_size;
|
||||
return data;
|
||||
}
|
||||
void Load(const std::string &path) {
|
||||
std::ifstream file(path);
|
||||
std::string line;
|
||||
int num_lines = 0;
|
||||
while (std::getline(file, line)) {
|
||||
std::vector<std::string> data;
|
||||
split(line, ';', &data);
|
||||
// load query data
|
||||
std::vector<int64_t> query_basic_data;
|
||||
split_to_int64(data[1], ' ', &query_basic_data);
|
||||
std::vector<int64_t> query_phrase_data;
|
||||
split_to_int64(data[2], ' ', &query_phrase_data);
|
||||
// load title data
|
||||
std::vector<int64_t> title_basic_data;
|
||||
split_to_int64(data[3], ' ', &title_basic_data);
|
||||
std::vector<int64_t> title_phrase_data;
|
||||
split_to_int64(data[4], ' ', &title_phrase_data);
|
||||
// filter the empty data
|
||||
bool flag =
|
||||
data[1].size() && data[2].size() && data[3].size() && data[4].size();
|
||||
if (flag) {
|
||||
query_basic.push_back(std::move(query_basic_data));
|
||||
query_phrase.push_back(std::move(query_phrase_data));
|
||||
title_basic.push_back(std::move(title_basic_data));
|
||||
title_phrase.push_back(std::move(title_phrase_data));
|
||||
num_lines++;
|
||||
}
|
||||
}
|
||||
num_samples = num_lines;
|
||||
}
|
||||
};
|
||||
|
||||
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
||||
int batch_size) {
|
||||
PaddleTensor query_basic_tensor, query_phrase_tensor, title_basic_tensor,
|
||||
title_phrase_tensor;
|
||||
query_basic_tensor.name = "query_basic";
|
||||
query_phrase_tensor.name = "query_phrase";
|
||||
title_basic_tensor.name = "pos_title_basic";
|
||||
title_phrase_tensor.name = "pos_title_phrase";
|
||||
auto one_batch = data->NextBatch();
|
||||
// assign data
|
||||
TensorAssignData<int64_t>(&query_basic_tensor, one_batch.query_basic,
|
||||
one_batch.lod1);
|
||||
TensorAssignData<int64_t>(&query_phrase_tensor, one_batch.query_phrase,
|
||||
one_batch.lod2);
|
||||
TensorAssignData<int64_t>(&title_basic_tensor, one_batch.title_basic,
|
||||
one_batch.lod3);
|
||||
TensorAssignData<int64_t>(&title_phrase_tensor, one_batch.title_phrase,
|
||||
one_batch.lod4);
|
||||
// Set inputs.
|
||||
input_slots->assign({query_basic_tensor, query_phrase_tensor,
|
||||
title_basic_tensor, title_phrase_tensor});
|
||||
for (auto &tensor : *input_slots) {
|
||||
tensor.dtype = PaddleDType::INT64;
|
||||
}
|
||||
}
|
||||
|
||||
void SetConfig(contrib::AnalysisConfig *cfg) {
|
||||
cfg->SetModel(FLAGS_infer_model);
|
||||
cfg->DisableGpu();
|
||||
cfg->SwitchSpecifyInputNames();
|
||||
cfg->SwitchIrOptim();
|
||||
}
|
||||
|
||||
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
||||
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
||||
std::vector<PaddleTensor> input_slots;
|
||||
int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
|
||||
LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
|
||||
for (int bid = 0; bid < epoch; ++bid) {
|
||||
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
|
||||
(*inputs).emplace_back(input_slots);
|
||||
}
|
||||
}
|
||||
|
||||
// Easy for profiling independently.
|
||||
TEST(Analyzer_Pyramid_DNN, profile) {
|
||||
contrib::AnalysisConfig cfg;
|
||||
SetConfig(&cfg);
|
||||
std::vector<PaddleTensor> outputs;
|
||||
|
||||
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
||||
SetInput(&input_slots_all);
|
||||
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
||||
input_slots_all, &outputs, FLAGS_num_threads);
|
||||
|
||||
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
|
||||
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
|
||||
size_t size = GetSize(outputs[0]);
|
||||
PADDLE_ENFORCE_GT(size, 0);
|
||||
float *result = static_cast<float *>(outputs[0].data.data());
|
||||
// output is probability, which is in (0, 1).
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
EXPECT_GT(result[i], 0);
|
||||
EXPECT_LT(result[i], 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check the fuse status
|
||||
TEST(Analyzer_Pyramid_DNN, fuse_statis) {
|
||||
contrib::AnalysisConfig cfg;
|
||||
SetConfig(&cfg);
|
||||
|
||||
int num_ops;
|
||||
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
||||
auto fuse_statis = GetFuseStatis(
|
||||
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
|
||||
}
|
||||
|
||||
// Compare result of NativeConfig and AnalysisConfig
|
||||
TEST(Analyzer_Pyramid_DNN, compare) {
|
||||
contrib::AnalysisConfig cfg;
|
||||
SetConfig(&cfg);
|
||||
|
||||
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
||||
SetInput(&input_slots_all);
|
||||
CompareNativeAndAnalysis(
|
||||
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
|
||||
}
|
||||
|
||||
// Compare Deterministic result
|
||||
TEST(Analyzer_Pyramid_DNN, compare_determine) {
|
||||
AnalysisConfig cfg;
|
||||
SetConfig(&cfg);
|
||||
|
||||
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
||||
SetInput(&input_slots_all);
|
||||
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
||||
input_slots_all);
|
||||
}
|
||||
|
||||
} // namespace inference
|
||||
} // namespace paddle
|
Loading…
Reference in new issue