parent
f67f0cae50
commit
67ce586453
@ -0,0 +1,95 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "hl_cnn.h"
|
||||
#include "paddle/fluid/operators/bilinear_interp_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
class BilinearInterpOpCUDAKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
|
||||
"This kernel only runs on GPU device.");
|
||||
auto* input_t = ctx.Input<Tensor>("X"); // float tensor
|
||||
auto* output_t = ctx.Output<Tensor>("Out"); // float tensor
|
||||
auto* input = input_t->data<T>();
|
||||
auto* output = output_t->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
int out_h = ctx.Attr<int>("out_h");
|
||||
int out_w = ctx.Attr<int>("out_w");
|
||||
int batch_size = input_t->dims()[0];
|
||||
int channels = input_t->dims()[1];
|
||||
int in_h = input_t->dims()[2];
|
||||
int in_w = input_t->dims()[3];
|
||||
|
||||
int in_hw = in_h * in_w;
|
||||
int out_hw = out_h * out_w;
|
||||
int in_chw = channels * in_hw;
|
||||
int out_chw = channels * out_hw;
|
||||
|
||||
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
|
||||
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
|
||||
|
||||
if (in_h == out_h && in_w == out_w) {
|
||||
memcpy(output, input, input_t->numel() * sizeof(T));
|
||||
} else {
|
||||
hl_bilinear_forward(input, in_h, in_w, batch_size, in_chw, output, out_h,
|
||||
out_w, batch_size, out_chw, channels, ratio_h,
|
||||
ratio_w);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class BilinearInterpGradOpCUDAKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* d_input_t = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||
auto* d_output_t = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* d_input = d_input_t->mutable_data<T>(ctx.GetPlace());
|
||||
auto* d_output = d_output_t->data<T>();
|
||||
|
||||
int out_h = ctx.Attr<int>("out_h");
|
||||
int out_w = ctx.Attr<int>("out_w");
|
||||
int batch_size = d_input_t->dims()[0];
|
||||
int channels = d_input_t->dims()[1];
|
||||
int in_h = d_input_t->dims()[2];
|
||||
int in_w = d_input_t->dims()[3];
|
||||
|
||||
int in_hw = in_h * in_w;
|
||||
int out_hw = out_h * out_w;
|
||||
int in_chw = channels * in_hw;
|
||||
int out_chw = channels * out_hw;
|
||||
|
||||
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
|
||||
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
|
||||
|
||||
if (in_h == out_h && in_w == out_w) {
|
||||
memcpy(d_input, d_output, d_input_t->numel() * sizeof(T));
|
||||
} else {
|
||||
hl_bilinear_backward(d_input, in_h, in_w, batch_size, in_chw, d_output,
|
||||
out_h, out_w, batch_size, out_chw, channels, ratio_h,
|
||||
ratio_w);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(bilinear_interp,
|
||||
ops::BilinearInterpOpCUDAKernel<float>);
|
||||
REGISTER_OP_CUDA_KERNEL(bilinear_interp_grad,
|
||||
ops::BilinearInterpGradOpCUDAKernel<float>);
|
Loading…
Reference in new issue