|
|
|
@ -13,7 +13,7 @@
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
"""
|
|
|
|
|
`paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2,
|
|
|
|
|
we want to make Paddle a plain Python package. The model config package defined
|
|
|
|
|
we want to make Paddle a plain Python package. The model config package defines
|
|
|
|
|
the way how to configure a neural network topology in Paddle Python code.
|
|
|
|
|
|
|
|
|
|
The primary usage shows below.
|
|
|
|
@ -30,7 +30,6 @@ The primary usage shows below.
|
|
|
|
|
# use prediction instance where needed.
|
|
|
|
|
parameters = paddle.parameters.create(cost)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import collections
|
|
|
|
|
import copy
|
|
|
|
|
import re
|
|
|
|
@ -44,9 +43,10 @@ __all__ = ['data', 'parse_network']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __need_to_keep__(name):
|
|
|
|
|
if name in ['StaticInput', 'LayerType', 'layer_support']:
|
|
|
|
|
return False
|
|
|
|
|
return True
|
|
|
|
|
return name in [
|
|
|
|
|
'StaticInput', 'SubsequenceInput', 'GeneratedInput', 'LayerType',
|
|
|
|
|
'layer_support'
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __need_to_wrap__(name):
|
|
|
|
@ -54,6 +54,8 @@ def __need_to_wrap__(name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __convert_name__(inname):
|
|
|
|
|
if __need_to_keep__(inname):
|
|
|
|
|
return inname
|
|
|
|
|
if inname == 'maxid_layer':
|
|
|
|
|
return 'max_id'
|
|
|
|
|
elif inname.endswith('memory') or inname.endswith(
|
|
|
|
@ -74,8 +76,6 @@ def __convert_name__(inname):
|
|
|
|
|
|
|
|
|
|
for name in v1_layers.__all__:
|
|
|
|
|
obj = getattr(v1_layers, name)
|
|
|
|
|
if not __need_to_keep__(name):
|
|
|
|
|
continue
|
|
|
|
|
new_name = __convert_name__(name)
|
|
|
|
|
if callable(obj) and __need_to_wrap__(name):
|
|
|
|
|
globals()[new_name] = __convert_to_v2__(obj, new_name, __name__)
|
|
|
|
@ -107,7 +107,7 @@ __data_layer__.__doc__ = __map_data_docstr__(v1_layers.data_layer.__doc__)
|
|
|
|
|
data = __convert_to_v2__(__data_layer__, 'name', __name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __get_used_layers__(output_layers, extra_layers=None):
|
|
|
|
|
def __get_used_layers__(output_layers):
|
|
|
|
|
layer_names = set()
|
|
|
|
|
parents = {}
|
|
|
|
|
|
|
|
|
@ -175,6 +175,8 @@ def __get_used_submodels__(layer_names):
|
|
|
|
|
for submodel in cp.g_config.model_config.sub_models:
|
|
|
|
|
if submodel.name in layer_names:
|
|
|
|
|
submodel_names.add(submodel.name)
|
|
|
|
|
if submodel.is_recurrent_layer_group:
|
|
|
|
|
layer_names |= set(submodel.layer_names)
|
|
|
|
|
return submodel_names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -248,18 +250,21 @@ def parse_network(output_layers, extra_layers=None):
|
|
|
|
|
|
|
|
|
|
model_config = ModelConfig()
|
|
|
|
|
model_config.type = cp.g_config.model_config.type
|
|
|
|
|
|
|
|
|
|
for layer in output_layers:
|
|
|
|
|
model_config.output_layer_names.append(layer.full_name)
|
|
|
|
|
output_layer_names.add(layer.full_name)
|
|
|
|
|
|
|
|
|
|
for l in cp.g_config.model_config.layers:
|
|
|
|
|
if l.name not in layer_names:
|
|
|
|
|
continue
|
|
|
|
|
model_config.layers.extend([l])
|
|
|
|
|
if l.type == 'data':
|
|
|
|
|
if l.name in model_config.output_layer_names:
|
|
|
|
|
continue
|
|
|
|
|
model_config.input_layer_names.append(l.name)
|
|
|
|
|
input_layer_names.add(l.name)
|
|
|
|
|
|
|
|
|
|
for layer in output_layers:
|
|
|
|
|
model_config.output_layer_names.append(layer.full_name)
|
|
|
|
|
output_layer_names.add(layer.full_name)
|
|
|
|
|
|
|
|
|
|
for e in cp.g_config.model_config.evaluators:
|
|
|
|
|
if e.name in evaluator_names:
|
|
|
|
|
model_config.evaluators.extend([e])
|
|
|
|
|