|
|
|
@ -202,24 +202,35 @@ def infer(use_cuda, inference_program, save_path):
|
|
|
|
|
inferencer = fluid.Inferencer(
|
|
|
|
|
inference_program, param_path=save_path, place=place)
|
|
|
|
|
|
|
|
|
|
def create_random_lodtensor(lod, place, low, high):
|
|
|
|
|
data = np.random.random_integers(low, high,
|
|
|
|
|
[lod[-1], 1]).astype("int64")
|
|
|
|
|
res = fluid.LoDTensor()
|
|
|
|
|
res.set(data, place)
|
|
|
|
|
res.set_lod([lod])
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
# Create an input example
|
|
|
|
|
lod = [0, 4, 10]
|
|
|
|
|
word = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
pred = create_random_lodtensor(lod, place, low=0, high=PRED_DICT_LEN - 1)
|
|
|
|
|
ctx_n2 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
ctx_n1 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
ctx_0 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
ctx_p1 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
ctx_p2 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
mark = create_random_lodtensor(lod, place, low=0, high=MARK_DICT_LEN - 1)
|
|
|
|
|
# Setup inputs by creating LoDTensors to represent sequences of words.
|
|
|
|
|
# Here each word is the basic element of these LoDTensors and the shape of
|
|
|
|
|
# each word (base_shape) should be [1] since it is simply an index to
|
|
|
|
|
# look up for the corresponding word vector.
|
|
|
|
|
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
|
|
|
|
|
# which has only one lod level. Then the created LoDTensors will have only
|
|
|
|
|
# one higher level structure (sequence of words, or sentence) than the basic
|
|
|
|
|
# element (word). Hence the LoDTensor will hold data for three sentences of
|
|
|
|
|
# length 3, 4 and 2, respectively.
|
|
|
|
|
# Note that lod info should be a list of lists.
|
|
|
|
|
lod = [[3, 4, 2]]
|
|
|
|
|
base_shape = [1]
|
|
|
|
|
# The range of random integers is [low, high]
|
|
|
|
|
word = fluid.create_random_lodtensor(
|
|
|
|
|
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
pred = fluid.create_random_lodtensor(
|
|
|
|
|
lod, base_shape, place, low=0, high=PRED_DICT_LEN - 1)
|
|
|
|
|
ctx_n2 = fluid.create_random_lodtensor(
|
|
|
|
|
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
ctx_n1 = fluid.create_random_lodtensor(
|
|
|
|
|
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
ctx_0 = fluid.create_random_lodtensor(
|
|
|
|
|
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
ctx_p1 = fluid.create_random_lodtensor(
|
|
|
|
|
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
ctx_p2 = fluid.create_random_lodtensor(
|
|
|
|
|
lod, base_shape, place, low=0, high=WORD_DICT_LEN - 1)
|
|
|
|
|
mark = fluid.create_random_lodtensor(
|
|
|
|
|
lod, base_shape, place, low=0, high=MARK_DICT_LEN - 1)
|
|
|
|
|
|
|
|
|
|
results = inferencer.infer(
|
|
|
|
|
{
|
|
|
|
|