|
|
|
@ -18,10 +18,45 @@ import paddle.trainer_config_helpers as conf_helps
|
|
|
|
|
import paddle.v2.activation as activation
|
|
|
|
|
import paddle.v2.data_type as data_type
|
|
|
|
|
import paddle.v2.layer as layer
|
|
|
|
|
import paddle.v2.attr as attr
|
|
|
|
|
from paddle.trainer_config_helpers.config_parser_utils import \
|
|
|
|
|
parse_network_config as parse_network
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CostLyaerTest(unittest.TestCase):
|
|
|
|
|
def test_cost_layer(self):
|
|
|
|
|
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
|
|
|
|
|
label = layer.data(name='label', type=data_type.integer_value(10))
|
|
|
|
|
weight = layer.data(name='weight', type=data_type.dense_vector(10))
|
|
|
|
|
score = layer.data(name='score', type=data_type.dense_vector(1))
|
|
|
|
|
hidden = layer.fc(input=pixel,
|
|
|
|
|
size=100,
|
|
|
|
|
act=activation.Sigmoid(),
|
|
|
|
|
param_attr=attr.Param(name='hidden'))
|
|
|
|
|
inference = layer.fc(input=hidden, size=10, act=activation.Softmax())
|
|
|
|
|
|
|
|
|
|
cost1 = layer.classification_cost(input=inference, label=label)
|
|
|
|
|
cost2 = layer.classification_cost(
|
|
|
|
|
input=inference, label=label, weight=weight)
|
|
|
|
|
cost3 = layer.cross_entropy_cost(input=inference, label=label)
|
|
|
|
|
cost4 = layer.cross_entropy_with_selfnorm_cost(
|
|
|
|
|
input=inference, label=label)
|
|
|
|
|
cost5 = layer.regression_cost(input=inference, label=label)
|
|
|
|
|
cost6 = layer.regression_cost(
|
|
|
|
|
input=inference, label=label, weight=weight)
|
|
|
|
|
cost7 = layer.multi_binary_label_cross_entropy_cost(
|
|
|
|
|
input=inference, label=label)
|
|
|
|
|
cost8 = layer.rank_cost(left=score, right=score, label=score)
|
|
|
|
|
cost9 = layer.lambda_cost(input=inference, score=score)
|
|
|
|
|
cost10 = layer.sum_cost(input=inference)
|
|
|
|
|
cost11 = layer.huber_cost(input=score, label=label)
|
|
|
|
|
|
|
|
|
|
print layer.parse_network(cost1, cost2)
|
|
|
|
|
print layer.parse_network(cost3, cost4)
|
|
|
|
|
print layer.parse_network(cost5, cost6)
|
|
|
|
|
print layer.parse_network(cost7, cost8, cost9, cost10, cost11)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RNNTest(unittest.TestCase):
|
|
|
|
|
def test_simple_rnn(self):
|
|
|
|
|
dict_dim = 10
|
|
|
|
|