Hide get_places. Mark it as deprecated

guochaorong-patch-1
yuyang18 7 years ago
parent 10fbb831ed
commit 6c83dcd622
No known key found for this signature in database
GPG Key ID: 6DFF29878217BE5F

@ -0,0 +1,38 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import sys
__all__ = ['deprecated']
def deprecated(since, instead, extra_message=""):
def decorator(func):
err_msg = "API {0} is deprecated since {1}. Please use {2} instead.".format(
func.__name__, since, instead)
if len(extra_message) != 0:
err_msg += "\n"
err_msg += extra_message
@functools.wraps(func)
def wrapper(*args, **kwargs):
print >> sys.stderr, err_msg
return func(*args, **kwargs)
wrapper.__doc__ += "\n "
wrapper.__doc__ += err_msg
return wrapper
return decorator

@ -18,10 +18,12 @@ All util layers.
from layer_function_generator import autodoc from layer_function_generator import autodoc
from ..framework import unique_name from ..framework import unique_name
from ..layer_helper import LayerHelper from ..layer_helper import LayerHelper
from ..annotations import deprecated
__all__ = ['get_places'] __all__ = []
@deprecated(since='0.15.0', instead="ParallelExecutor")
@autodoc() @autodoc()
def get_places(device_count=None, device_type=None): def get_places(device_count=None, device_type=None):
helper = LayerHelper('get_places', **locals()) helper = LayerHelper('get_places', **locals())

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function from __future__ import print_function
from paddle.fluid.layers.device import get_places
import unittest import unittest
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle import paddle
@ -144,7 +144,7 @@ def train(word_dict,
cost, acc_out, prediction = net_method( cost, acc_out, prediction = net_method(
data, label, input_dim=dict_dim, class_dim=class_dim) data, label, input_dim=dict_dim, class_dim=class_dim)
else: else:
places = fluid.layers.get_places() places = get_places()
pd = fluid.layers.ParallelDo(places) pd = fluid.layers.ParallelDo(places)
with pd.do(): with pd.do():
cost, acc, _ = net_method( cost, acc, _ = net_method(

@ -12,15 +12,17 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function from __future__ import print_function
import argparse
import paddle.fluid as fluid
import paddle
import sys
import numpy
import unittest
import math import math
import sys
import os import os
import sys
import unittest
import numpy
import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
BATCH_SIZE = 64 BATCH_SIZE = 64
@ -76,7 +78,7 @@ def train(nn_type,
net_conf = conv_net net_conf = conv_net
if parallel: if parallel:
places = fluid.layers.get_places() places = get_places()
pd = fluid.layers.ParallelDo(places) pd = fluid.layers.ParallelDo(places)
with pd.do(): with pd.do():
img_ = pd.read_input(img) img_ = pd.read_input(img)

@ -14,6 +14,7 @@
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
import unittest import unittest
import os import os
import numpy as np import numpy as np
@ -80,7 +81,7 @@ def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True):
avg_cost, predict_word = __network__( avg_cost, predict_word = __network__(
[first_word, second_word, third_word, forth_word, next_word]) [first_word, second_word, third_word, forth_word, next_word])
else: else:
places = fluid.layers.get_places() places = get_places()
pd = fluid.layers.ParallelDo(places) pd = fluid.layers.ParallelDo(places)
with pd.do(): with pd.do():
avg_cost, predict_word = __network__( avg_cost, predict_word = __network__(

@ -12,12 +12,13 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import numpy as np
import paddle
import paddle.fluid as fluid
import math import math
import sys import sys
import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
# need to fix random seed and training data to compare the loss # need to fix random seed and training data to compare the loss
# value accurately calculated by the default and the memory optimization # value accurately calculated by the default and the memory optimization
# version. # version.
@ -34,7 +35,7 @@ if fluid.core.is_compiled_with_cuda():
use_nccl = False use_nccl = False
place = fluid.CUDAPlace(0) place = fluid.CUDAPlace(0)
places = fluid.layers.get_places(device_count=0, device_type=device_type) places = get_places(device_count=0, device_type=device_type)
pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl) pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
with pd.do(): with pd.do():
x_ = pd.read_input(x) x_ = pd.read_input(x)

@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
import decorators import decorators
import unittest import unittest
@ -20,7 +21,7 @@ import unittest
class TestGetPlaces(unittest.TestCase): class TestGetPlaces(unittest.TestCase):
@decorators.prog_scope() @decorators.prog_scope()
def test_get_places(self): def test_get_places(self):
places = fluid.layers.get_places() places = get_places()
cpu = fluid.CPUPlace() cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu) exe = fluid.Executor(cpu)
exe.run(fluid.default_main_program()) exe.run(fluid.default_main_program())

@ -16,6 +16,7 @@ from __future__ import print_function
import unittest import unittest
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
from paddle.fluid.layers.device import get_places
import paddle.fluid.nets as nets import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
@ -238,7 +239,7 @@ class TestBook(unittest.TestCase):
def test_get_places(self): def test_get_places(self):
program = Program() program = Program()
with program_guard(program): with program_guard(program):
x = layers.get_places(device_count=4) x = get_places(device_count=4)
self.assertIsNotNone(x) self.assertIsNotNone(x)
print(str(program)) print(str(program))

@ -15,6 +15,7 @@
import unittest import unittest
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
import paddle.fluid.profiler as profiler import paddle.fluid.profiler as profiler
import numpy import numpy
@ -115,7 +116,7 @@ class BaseParallelForTest(unittest.TestCase):
if use_parallel: if use_parallel:
thread_num = fluid.core.get_cuda_device_count( thread_num = fluid.core.get_cuda_device_count(
) if use_gpu else 8 ) if use_gpu else 8
places = fluid.layers.get_places(thread_num) places = get_places(thread_num)
pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl) pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
data = next(generator) data = next(generator)

Loading…
Cancel
Save