Merge branch 'develop' into fix_build_android_openblas

cross_channel_norm
Liu Yiqun 7 years ago
commit 6dc0e663f4

@ -22,6 +22,8 @@ SET(CMAKE_C_FLAGS_RELWITHDEBINFO "-O3 -g -DNDEBUG")
include(system)
project(paddle CXX C Go)
message(STATUS "CXX compiler: " ${CMAKE_CXX_COMPILER} ", version: " ${CMAKE_CXX_COMPILER_VERSION})
message(STATUS "C compiler: " ${CMAKE_C_COMPILER} ", version: " ${CMAKE_C_COMPILER_VERSION})
find_package(Sphinx)
if(NOT CMAKE_CROSSCOMPILING)

@ -2,8 +2,8 @@
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://doc.paddlepaddle.org/develop/doc/)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://doc.paddlepaddle.org/develop/doc_cn/)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/index_en.html)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html)
[![Coverage Status](https://coveralls.io/repos/github/PaddlePaddle/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/PaddlePaddle/Paddle?branch=develop)
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
@ -36,7 +36,7 @@ Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddl
examples:
- Optimized math operations through SSE/AVX intrinsics, BLAS libraries
(e.g. MKL, ATLAS, cuBLAS) or customized CPU/GPU kernels.
(e.g. MKL, OpenBLAS, cuBLAS) or customized CPU/GPU kernels.
- Highly optimized recurrent networks which can handle **variable-length**
sequence without padding.
- Optimized local and distributed training for models with high dimensional
@ -61,32 +61,32 @@ Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddl
## Installation
It is recommended to check out the
[Docker installation guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/docker_install_en.html)
[Docker installation guide](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/docker_install_en.html)
before looking into the
[build from source guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/build_from_source_en.html).
[build from source guide](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/build_from_source_en.html).
## Documentation
We provide [English](http://doc.paddlepaddle.org/develop/doc/) and
[Chinese](http://doc.paddlepaddle.org/doc_cn/) documentation.
We provide [English](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/index_en.html) and
[Chinese](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html) documentation.
- [Deep Learning 101](http://book.paddlepaddle.org/index.html)
- [Deep Learning 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html)
You might want to start from this online interactive book that can run in a Jupyter Notebook.
- [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html)
- [Distributed Training](http://www.paddlepaddle.org/docs/develop/documentation/en/howto/usage/cluster/cluster_train_en.html)
You can run distributed training jobs on MPI clusters.
- [Distributed Training on Kubernetes](http://doc.paddlepaddle.org/develop/doc/howto/usage/k8s/k8s_en.html)
- [Distributed Training on Kubernetes](http://www.paddlepaddle.org/docs/develop/documentation/en/howto/usage/cluster/k8s_en.html)
You can also run distributed training jobs on Kubernetes clusters.
- [Python API](http://doc.paddlepaddle.org/develop/doc/api/index_en.html)
- [Python API](http://www.paddlepaddle.org/docs/develop/documentation/en/api/index_en.html)
Our new API enables much shorter programs.
- [How to Contribute](http://doc.paddlepaddle.org/develop/doc/howto/dev/contribute_to_paddle_en.html)
- [How to Contribute](http://www.paddlepaddle.org/docs/develop/documentation/en/howto/dev/contribute_to_paddle_en.html)
We appreciate your contributions!

@ -1,3 +1,62 @@
# v0.11.0版本
## PaddlePaddle Fluid
- PaddlePaddle发布版本v0.11.0包含一个新的特性*PaddlePaddle Fluid*. Fluid 是设计用来让用户像Pytorch和Tensorflow Eager Execution一样执行程序。在这些系统中不再有*模型*这个概念应用也不再包含一个用于描述Operator图或者一系列层的符号描述而是像通用程序那样描述训练或者预测的过程。而Fluid与PyTorch或Eager Execution的区别在于Fluid不依赖Python提供的控制流例如 if-else-then或者for而是提供了基于C++实现的控制流并暴露了对应的用with语法实现的Python接口。例如
https://github.com/PaddlePaddle/Paddle/blob/3df78ed2a98d37f7ae6725894cc7514effd5664b/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44
- 在v0.11.0版本中我们提供了一个C++类`Executor`用于运行一个Fluid程序。Executor类似一个解释器。在未来的版本中我们将提升和优化Executor成为一个调试器就像GDB。并可能提供一些编译器这个编译器会读取一个上文所描述的应用然后编译成一个等价的
源代码这个源代码可以被nvcc编译成可以使用CUDA的二进制或者被icc编译成可以充分利用Intel CPU的二进制。
## 新特点
* 发布 `PaddlePaddle Fluid`
* 增加了用于模型预测的C-API。
* 用Fluid API实现了一个简单的GAN的例子。
* 增加了关于性能调优的文档。
* 为`paddle.v2.dataset`下载数据集提供了重试机制.
* C++中使用protobuf-lite替换protobuf减少了二进制的大小。
* 发布了新特性 [Elastic Deep Learning (EDL)](https://github.com/PaddlePaddle/cloud/tree/develop/doc/autoscale/experiment).
* 基于Bazel API利用cmake实现了一个的新的构建系统函数库。
* 当使用编译选项`WITH_MKL=ON`时自动下载和编译Intel® [MKLML](https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz) 函数库.
* [Intel® MKL-DNN on PaddlePaddle](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn):
- 完成了 11个 MKL-DNN 层: Convolution, Fully connectivity, Pooling, ReLU, Tanh, ELU, Softmax, BatchNorm, AddTo, Concat, LRN。
- 完成了 3个 MKL-DNN 网络: VGG-19, ResNet-50, GoogleNet
- 基于Intel Skylake 6148 CPU的[性能测试](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/IntelOptimizedPaddle.md) : 相对于MKLML有2~3倍的训练加速。
* 增加 [softsign activation](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/activation.html#softsign)
* 增加 [dot product layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#dot-prod)
* 增加 [L2 distance layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#l2-distance)
* 增加 [sub-nested sequence layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#sub-nested-seq)
* 增加 [kmax sequence score layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#kmax-sequence-score)
* 增加 [sequence slice layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#seq-slice)
* 增加 [row convolution layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#row-conv)
* 增加移动端友好的网页
## 改进
* 使用一个Python`whl`包即可安装.
* [V2 API可以实现用户定制化评估](https://github.com/PaddlePaddle/models/tree/develop/ltr#训练过程中输出自定义评估指标)。
* 将 `PADDLE_ONLY_CPU` 改为 `PADDLE_WITH_GPU`, 因为我们会支持多种设备。
* 删除了有一些bug的BarrierStat。
* 清理和删除了paddle::Parameter中未使用的函数。
* 删除了ProtoDataProvider。
* Huber loss同时支持回归和分类。
* 为sequence pooling 层增加`stride`参数。
* v2 API自动使用cudnn batch normalization。
* 可以使用一个固定的参数名共享BN层的参数。
* 2D convolution operation支持variable-dimension input特性。
* 重构cmake中关于CUDA的部分并实现自动检测GPU架构的功能。
* 优化网页导航。
## 错误修复
* 修复ROI pooling的Bug. cc9a761
* 修复当label是dense vector是AUC变成0的问题. #5274
* 修复WarpCTC 层的Bug.
# v0.10.0版本
我们非常高兴发布了PaddlePaddle V0.10.0版,并开发了新的[Python API](http://research.baidu.com/paddlepaddles-new-api-simplifies-deep-learning-programs/)。

@ -1,3 +1,75 @@
# Release v0.11.0
## PaddlePaddle Fluid
- Release 0.11.0 includes a new feature *PaddlePaddle Fluid*. Fluid is
designed to allow users to program like PyTorch and TensorFlow Eager Execution.
In these systems, there is no longer the concept *model* and applications
do not include a symbolic description of a graph of operators nor a sequence
of layers. Instead, applications look exactly like a usual program that
describes a process of training or inference. The difference between
Fluid and PyTorch or Eager Execution is that Fluid doesn't rely on Python's
control-flow, `if-then-else` nor `for`. Instead, Fluid provides its
C++ implementations and their Python binding using the `with` statement. For an example
https://github.com/PaddlePaddle/Paddle/blob/3df78ed2a98d37f7ae6725894cc7514effd5664b/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44
- In 0.11.0, we provides a C++ class `Executor` to run a Fluid program.
Executor works like an interpreter. In future version, we will improve
`Executor` into a debugger like GDB, and we might provide some compilers,
which, for example, takes an application like the above one, and outputs
an equivalent C++ source program, which can be compiled using
[`nvcc`](http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html)
to generate binaries that use CUDA, or using
[`icc`](https://software.intel.com/en-us/c-compilers) to generate binaries
that make full use of Intel CPUs.
## New Features
* Release `PaddlePaddle Fluid`.
* Add C-API for model inference
* Use fluid API to create a simple GAN demo.
* Add develop guide about performance tunning.
* Add retry when download `paddle.v2.dataset`.
* Linking protobuf-lite not protobuf in C++. Reduce the binary size.
* Feature [Elastic Deep Learning (EDL)](https://github.com/PaddlePaddle/cloud/tree/develop/doc/autoscale/experiment) released.
* A new style cmake functions for Paddle. It is based on Bazel API.
* Automatically download and compile with Intel® [MKLML](https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz) library as CBLAS when build `WITH_MKL=ON`.
* [Intel® MKL-DNN on PaddlePaddle](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn):
- Complete 11 MKL-DNN layers: Convolution, Fully connectivity, Pooling, ReLU, Tanh, ELU, Softmax, BatchNorm, AddTo, Concat, LRN.
- Complete 3 MKL-DNN networks: VGG-19, ResNet-50, GoogleNet
- [Benchmark](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/IntelOptimizedPaddle.md) on Intel Skylake 6148 CPU: 2~3x training speedup compared with MKLML.
* Add the [`softsign` activation](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/activation.html#softsign).
* Add the [dot product layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#dot-prod).
* Add the [L2 distance layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#l2-distance).
* Add the [sub-nested sequence layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#sub-nested-seq).
* Add the [kmax sequence score layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#kmax-sequence-score).
* Add the [sequence slice layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#seq-slice).
* Add the [row convolution layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#row-conv)
* Add mobile friendly webpages.
## Improvements
* Build and install using a single `whl` package.
* [Custom evaluating in V2 API](https://github.com/PaddlePaddle/models/tree/develop/ltr#训练过程中输出自定义评估指标).
* Change `PADDLE_ONLY_CPU` to `PADDLE_WITH_GPU`, since we will support many kinds of devices.
* Remove buggy BarrierStat.
* Clean and remove unused functions in paddle::Parameter.
* Remove ProtoDataProvider.
* Huber loss supports both regression and classification.
* Add the `stride` parameter for sequence pooling layers.
* Enable v2 API use cudnn batch normalization automatically.
* The BN layer's parameter can be shared by a fixed the parameter name.
* Support variable-dimension input feature for 2D convolution operation.
* Refine cmake about CUDA to automatically detect GPU architecture.
* Improved website navigation.
## Bug Fixes
* Fix bug in ROI pooling. cc9a761
* Fix AUC is zero when label is dense vector. #5274
* Fix bug in WarpCTC layer.
# Release v0.10.0
We are glad to release version 0.10.0. In this version, we are happy to release the new

@ -2,27 +2,25 @@
Machine:
- Server
- Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket
- Laptop
- DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD
- i5 MacBook Pro (Retina, 13-inch, Early 2015)
- Desktop
- i7-6700k
- Server: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket
- Laptop: TBD
System: CentOS release 6.3 (Final), Docker 1.12.1.
PaddlePaddle: paddlepaddle/paddle:latest (for MKLML and MKL-DNN), paddlepaddle/paddle:latest-openblas (for OpenBLAS)
- MKL-DNN tag v0.11
- MKLML 2018.0.1.20171007
- OpenBLAS v0.2.20
(TODO: will rerun after 0.11.0)
PaddlePaddle: (TODO: will rerun after 0.11.0)
- paddlepaddle/paddle:latest (for MKLML and MKL-DNN)
- MKL-DNN tag v0.11
- MKLML 2018.0.1.20171007
- paddlepaddle/paddle:latest-openblas (for OpenBLAS)
- OpenBLAS v0.2.20
On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively.
## Benchmark Model
### Server
#### Training
Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
Input image size - 3 * 224 * 224, Time: images/second
@ -35,9 +33,7 @@ Input image size - 3 * 224 * 224, Time: images/second
| MKLML | 12.12 | 13.70 | 16.18 |
| MKL-DNN | 28.46 | 29.83 | 30.44 |
chart on batch size 128
TBD
<img src="figs/vgg-cpu-train.png" width="500">
- ResNet-50
@ -47,9 +43,7 @@ TBD
| MKLML | 32.52 | 31.89 | 33.12 |
| MKL-DNN | 81.69 | 82.35 | 84.08 |
chart on batch size 128
TBD
<img src="figs/resnet-cpu-train.png" width="500">
- GoogLeNet
@ -59,10 +53,35 @@ TBD
| MKLML | 128.46| 137.89| 158.63 |
| MKL-DNN     | 250.46| 264.83| 269.50 |
chart on batch size 128
TBD
<img src="figs/googlenet-cpu-train.png" width="500">
#### Inference
Test on batch size 1, 2, 4, 8, 16 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
- VGG-19
| BatchSize | 1 | 2 | 4 | 8 | 16 |
|-----------|-------|-------|-------|-------|-------|
| OpenBLAS | 1.07 | 1.08 | 1.06 | 0.88 | 0.65 |
| MKLML | 5.58 | 9.80 | 15.15 | 21.21 | 28.67 |
| MKL-DNN | 75.07 | 88.64 | 82.58 | 92.29 | 96.75 |
- ResNet-50
| BatchSize | 1 | 2 | 4 | 8 | 16 |
|-----------|-------|--------|--------|--------|--------|
| OpenBLAS | 3.35 | 3.19 | 3.09 | 2.55 | 1.96 |
| MKLML | 6.33 | 12.02 | 22.88 | 40.53 | 63.09 |
| MKL-DNN | 107.83| 148.84 | 177.78 | 189.35 | 217.69 |
- GoogLeNet
| BatchSize | 1 | 2 | 4 | 8 | 16 |
|-----------|--------|--------|--------|--------|--------|
| OpenBLAS | 12.04 | 11.31 | 10.00 | 9.07 | 4.34 |
| MKLML | 22.74 | 41.56 | 81.22 | 133.47 | 210.53 |
| MKL-DNN | 175.10 | 272.92 | 450.70 | 512.00 | 600.94 |
### Laptop
TBD
### Desktop
TBD

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

@ -28,6 +28,10 @@ function train() {
--test_period=100 \
--config_args=$args \
2>&1 | tee ${log}
avg_time=`tail ${log} -n 1 | awk -F ' ' '{print $8}' | sed 's/avg=//'`
fps=`awk 'BEGIN{printf "%.2f",('$bs' / '$avg_time' * 1000)}'`
echo "FPS: $fps images/sec" 2>&1 | tee -a ${log}
}
if [ ! -f "train.list" ]; then

@ -0,0 +1,62 @@
set -e
function clock_to_seconds() {
hours=`echo $1 | awk -F ':' '{print $1}'`
mins=`echo $1 | awk -F ':' '{print $2}'`
secs=`echo $1 | awk -F ':' '{print $3}'`
echo `awk 'BEGIN{printf "%.2f",('$secs' + '$mins' * 60 + '$hours' * 3600)}'`
}
function infer() {
unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY
topology=$1
layer_num=$2
bs=$3
thread=`nproc`
if [ $thread -gt $bs ]; then
thread=$bs
fi
log="logs/infer-${topology}-${layer_num}-${thread}openblas-${bs}.log"
models_in="models/${topology}-${layer_num}/pass-00000/"
if [ ! -d $models_in ]; then
echo "./run_mkl_infer.sh to save the model first"
exit 0
fi
log_period=$((256 / bs))
paddle train --job=test \
--config="${topology}.py" \
--use_gpu=False \
--trainer_count=$thread \
--log_period=$log_period \
--config_args="batch_size=${bs},layer_num=${layer_num},is_infer=True" \
--init_model_path=$models_in \
2>&1 | tee ${log}
# calculate the last 5 logs period time of 1280 samples,
# the time before are burning time.
start=`tail ${log} -n 7 | head -n 1 | awk -F ' ' '{print $2}' | xargs`
end=`tail ${log} -n 2 | head -n 1 | awk -F ' ' '{print $2}' | xargs`
start_sec=`clock_to_seconds $start`
end_sec=`clock_to_seconds $end`
fps=`awk 'BEGIN{printf "%.2f",(1280 / ('$end_sec' - '$start_sec'))}'`
echo "Last 1280 samples start: ${start}(${start_sec} sec), end: ${end}(${end_sec} sec;" >> ${log}
echo "FPS: $fps images/sec" 2>&1 | tee -a ${log}
}
if [ ! -f "train.list" ]; then
echo " " > train.list
fi
if [ ! -f "test.list" ]; then
echo " " > test.list
fi
if [ ! -d "logs" ]; then
mkdir logs
fi
# inference benchmark
for batchsize in 1 2 4 8 16; do
infer googlenet v1 $batchsize
infer resnet 50 $batchsize
infer vgg 19 $batchsize
done

@ -0,0 +1,39 @@
set -e
function train() {
unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY
topology=$1
layer_num=$2
bs=$3
thread=`nproc`
# each trainer_count use only 1 core to avoid conflict
log="logs/train-${topology}-${layer_num}-${thread}openblas-${bs}.log"
args="batch_size=${bs},layer_num=${layer_num}"
config="${topology}.py"
paddle train --job=time \
--config=$config \
--use_gpu=False \
--trainer_count=$thread \
--log_period=10 \
--test_period=100 \
--config_args=$args \
2>&1 | tee ${log}
avg_time=`tail ${log} -n 1 | awk -F ' ' '{print $8}' | sed 's/avg=//'`
fps=`awk 'BEGIN{printf "%.2f",('$bs' / '$avg_time' * 1000)}'`
echo "FPS: $fps images/sec" 2>&1 | tee -a ${log}
}
if [ ! -f "train.list" ]; then
echo " " > train.list
fi
if [ ! -d "logs" ]; then
mkdir logs
fi
# training benchmark
for batchsize in 64 128 256; do
train vgg 19 $batchsize
train resnet 50 $batchsize
train googlenet v1 $batchsize
done

@ -3,7 +3,7 @@
# It will search MKLML, atlas, OpenBlas, reference-cblas in order.
#
# If any cblas implementation found, the following variable will be set.
# CBLAS_PROVIDER # one of MKLML, ATLAS, OPENBLAS, REFERENCE
# CBLAS_PROVIDER # one of MKLML, OPENBLAS, REFERENCE
# CBLAS_INC_DIR # the include directory for cblas.
# CBLAS_LIBS # a list of libraries should be linked by paddle.
# # Each library should be full path to object file.
@ -17,7 +17,7 @@ if(WITH_MKLML AND MKLML_INC_DIR AND MKLML_LIB)
set(CBLAS_INC_DIR ${MKLML_INC_DIR})
set(CBLAS_LIBRARIES ${MKLML_LIB})
add_definitions(-DPADDLE_USE_MKLML)
add_definitions(-DPADDLE_WITH_MKLML)
add_definitions(-DLAPACK_FOUND)
message(STATUS "Found cblas and lapack in MKLML "
@ -25,42 +25,6 @@ if(WITH_MKLML AND MKLML_INC_DIR AND MKLML_LIB)
return()
endif()
## Then find atlas.
set(ATLAS_ROOT $ENV{ATLAS_ROOT} CACHE PATH "Folder contains Atlas")
set(ATLAS_INCLUDE_SEARCH_PATHS
${ATLAS_ROOT}/include
/usr/include
/usr/include/atlas)
set(ATLAS_LIB_SEARCH_PATHS
${ATLAS_ROOT}/lib
/usr/lib
/usr/lib/blas/atlas
/usr/lib/atlas
/usr/lib/atlas-base # special for ubuntu 14.04.
)
find_path(ATLAS_INC_DIR NAMES cblas.h
PATHS ${ATLAS_INCLUDE_SEARCH_PATHS})
find_path(ATLAS_CLAPACK_INC_DIR NAMES clapack.h
PATHS ${ATLAS_INCLUDE_SEARCH_PATHS})
find_library(ATLAS_CBLAS_LIB NAMES cblas libcblas.so.3
PATHS ${ATLAS_LIB_SEARCH_PATHS})
find_library(ATLAS_CLAPACK_LIB NAMES lapack_atlas liblapack_atlas.so.3
PATHS ${ATLAS_LIB_SEARCH_PATHS})
if(ATLAS_CLAPACK_INC_DIR AND ATLAS_INC_DIR AND ATLAS_CBLAS_LIB AND ATLAS_CLAPACK_LIB)
set(CBLAS_FOUND ON)
set(CBLAS_PROVIDER ATLAS)
set(CBLAS_INC_DIR ${ATLAS_INC_DIR} ${ATLAS_CLAPACK_INC_DIR})
set(CBLAS_LIBRARIES ${ATLAS_CLAPACK_LIB} ${ATLAS_CBLAS_LIB})
add_definitions(-DPADDLE_USE_ATLAS)
add_definitions(-DLAPACK_FOUND)
message(STATUS "Found ATLAS (include: ${ATLAS_INC_DIR}, library: ${CBLAS_LIBRARIES})")
message(STATUS "Found lapack in ATLAS (include: ${ATLAS_CLAPACK_INC_DIR})")
return()
endif()
## Then find openblas.
set(OPENBLAS_ROOT $ENV{OPENBLAS_ROOT} CACHE PATH "Folder contains Openblas")
set(OPENBLAS_INCLUDE_SEARCH_PATHS

@ -67,5 +67,5 @@ ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB})
ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT})
MESSAGE(STATUS "MKLDNN library: ${MKLDNN_LIB}")
add_definitions(-DPADDLE_USE_MKLDNN)
add_definitions(-DPADDLE_WITH_MKLDNN)
LIST(APPEND external_project_dependencies mkldnn)

@ -7,3 +7,4 @@ API
模型配置 <v2/model_configs.rst>
数据访问 <v2/data.rst>
训练与应用 <v2/run_logic.rst>
v2/fluid.rst

@ -99,3 +99,10 @@ STanh
.. automodule:: paddle.v2.activation
:members: STanh
:noindex:
SoftSign
========
.. automodule:: paddle.v2.activation
:members: SoftSign
:noindex:

@ -188,12 +188,6 @@ beam_search_decode
:noindex:
lstm
---------
.. autofunction:: paddle.v2.fluid.layers.lstm
:noindex:
lod_rank_table
---------
.. autofunction:: paddle.v2.fluid.layers.lod_rank_table
@ -300,3 +294,27 @@ conv2d_transpose
.. autofunction:: paddle.v2.fluid.layers.conv2d_transpose
:noindex:
sequence_expand
---------
.. autofunction:: paddle.v2.fluid.layers.sequence_expand
:noindex:
lstm_unit
---------
.. autofunction:: paddle.v2.fluid.layers.lstm_unit
:noindex:
sequence_softmax
---------
.. autofunction:: paddle.v2.fluid.layers.sequence_softmax
:noindex:
reduce_sum
---------
.. autofunction:: paddle.v2.fluid.layers.reduce_sum
:noindex:

@ -1,23 +1,29 @@
# Executor Design Doc
## Motivation
In [fluid](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/fluid.md), we encourage the user to use deep learning programming paradigms to describe the training process. When the user-written Python program is executed, it will first create a protobuf message
[`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/paddle/framework/framework.proto#L145) that describes the process and is conceptually like an [abstract syntax tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree).
We use executor to do the runtime evaluation of a `ProgramDesc`.
The executor runs the `ProgramDesc` like an interpreter. `ProgramDesc` contains the intrinsics (operators in this case) and variables which will be used, executor explicitly executes the stored precompiled code.
## Overview
An executor takes a `ProgramDesc`, a `block_id` and a `Scope`. The `ProgramDesc` is a list of blocks and each block contains the protobuf definition of all the parameters and operators. The `block_id` specifies the entrance block. And the `Scope` is the container of all the variable instance, which is persistent throughout different runs.
An executor takes a `ProgramDesc`, a `block_id` and a `Scope`. The `ProgramDesc` is a list of blocks and each block contains the protobuf definition of all the parameters and operators in the block. The `block_id` specifies the entrance block. And the `Scope` is the container of all the variable instances, which is persistent throughout different runs.
### What does executor do?
## Executor
It evaluates all the operators in the `block_id`th block of a `ProgramDesc`.
The `Executor` explicitly executes all the intrinsics (operators here) in the `block_id`th block of a `ProgramDesc`. Essentially, it instantiates Variables and Operators, then runs all the operators in sequence one-by-one.
It is very similar to how a push stack frame works when entering a block, following which it cleans up all the temporary variables when a mini-batch is finished. It does not however, have the stack frame pop process.
### What does executor NOT do?
### The interface
```c++
Executor(places);
```
A executor does not own any computing resources, a user can only construct an executor using the specified places.
It does not do runtime optimization, meaning intelligently parse the dependency of each op a choose which one to be run and in which order they should be run.
### Running an Executor
It does not do graph partitioning, meaning dividing the `ProgramDesc` into several small pieces and executing them on different devices.
## Implementation
`Executor` evaluates a `ProgramDesc`. Essentially, it instantiates Variables and Operators, then run all the operators in sequence. [[code]](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.cc)
```
void Run(ProgramDesc, Scope, block_id, create_local_scope);
```
An `Executor` only provides a unified way to execute `ProgramDesc`. `ProgramDesc` is the target that will be executed, the `Scope` specifies the variable container, the `block_id` indicates the entrance block and `create_local_scope` is a boolean that states whether it will destroy the temporary variables after the execution is finished.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 121 KiB

@ -0,0 +1,122 @@
# Design Doc: PaddlePaddle Fluid
## Why Fluid
When Baidu developed PaddlePaddle in 2013, the only well-known open source deep learning system at the time was Caffe. However, when PaddlePaddle was open-sourced in 2016, many other choices were available. There was a challenge -- what is the need for open sourcing yet another deep learning framework?
Fluid is the answer. Fluid is similar to PyTorch and TensorFlow Eager Execution, which describes the "process" of training or inference using the concept of a model. In fact in PyTorch, TensorFlow Eager Execution and Fluid, there is no concept of a model at all. The details are covered in the sections below. Fluid is currently more extreme in the above mentioned idea than PyTorch and Eager Execution, and we are trying to push Fluid towards the directions of a compiler and a new programming language for deep learning.
## The Evolution of Deep Learning Systems
Deep learning infrastructure is one of the fastest evolving technologies. Within four years, there have already been three generations of technologies invented.
| Existed since | model as sequence of layers | model as graph of operators | No model |
|--|--|--|--|
| 2013 | Caffe, Theano, Torch, PaddlePaddle | | |
| 2015 | | TensorFlow, MxNet, Caffe2, ONNX, n-graph | |
| 2016 | | | PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid |
From the above table, we see that the deep learning technology is evolving towards getting rid of the concept of a model. To understand the reasons behind this direction, a comparison of the *programming paradigms* or the ways to program deep learning applications using these systems, would be helpful. The following section goes over these.
## Deep Learning Programming Paradigms
With the systems listed as the first or second generation, e.g., Caffe or TensorFlow, an AI application training program looks like the following:
```python
x = layer.data("image")
l = layer.data("label")
f = layer.fc(x, W)
s = layer.softmax(f)
c = layer.mse(l, s)
for i in xrange(1000): # train for 1000 iterations
m = read_minibatch()
forward({input=x, data=m}, minimize=c)
backward(...)
print W # print the trained model parameters.
```
The above program includes two parts:
1. The first part describes the model, and
2. The second part describes the training process (or inference process) for the model.
This paradigm has a well-known problem that limits the productivity of programmers. If the programmer made a mistake in configuring the model, the error messages wouldn't show up until the second part is executed and `forward` and `backward` propagations are performed. This makes it difficult for the programmer to debug and locate a mistake that is located blocks away from the actual error prompt.
This problem of being hard to debug and re-iterate fast on a program is the primary reason that programmers, in general, prefer PyTorch over the older systems. Using PyTorch, we would write the above program as following:
```python
W = tensor(...)
for i in xrange(1000): # train for 1000 iterations
m = read_minibatch()
x = m["image"]
l = m["label"]
f = layer.fc(x, W)
s = layer.softmax(f)
c = layer.mse(l, s)
backward()
print W # print the trained model parameters.
```
We can see that the main difference is the moving the model configuration part (the first step) into the training loop. This change would allow the mistakes in model configuration to be reported where they actually appear in the programming block. This change also represents the model better, or its forward pass, by keeping the configuration process in the training loop.
## Describe Arbitrary Models for the Future
Describing the process instead of the model also brings Fluid, the flexibility to define different non-standard models that haven't been invented yet.
As we write out the program for the process, we can write an RNN as a loop, instead of an RNN as a layer or as an operator. A PyTorch example would look like the following:
```python
for i in xrange(1000):
m = read_minibatch()
x = m["sentence"]
for t in xrange x.len():
h[t] = the_step(x[t])
```
With Fluid, the training loop and the RNN in the above program are not really Python loops, but just a "loop structure" provided by Fluid and implemented in C++ as the following:
```python
train_loop = layers.While(cond)
with train_loop.block():
m = read_minibatch()
x = m["sentence"]
rnn = layers.While(...)
with rnn.block():
h[t] = the_step(input[t])
```
An actual Fluid example is described [here](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44).
From the example, the Fluid programs look very similar to their PyTorch equivalent programs, except that Fluid's loop structure, wrapped with Python's `with` statement, could run much faster than just a Python loop.
We have more examples of the [`if-then-else`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/if_else_op.md) structure of Fluid.
## Turing Completeness
In computability theory, a system of data-manipulation rules, such as a programming language, is said to be Turing complete if it can be used to simulate any Turing machine. For a programming language, if it provides if-then-else and loop, it is Turing complete. From the above examples, Fluid seems to be Turing complete; however, it is noteworthy to notice that there is a slight difference between the `if-then-else` of Fluid and that of a programming language. The difference being that the former runs both of its branches and splits the input mini-batch into two -- one for the True condition and another for the False condition. This hasn't been researched in depth if this is equivalent to the `if-then-else` in programming languages that makes them Turing-complete. Based on a conversation with [Yuang Yu](https://research.google.com/pubs/104812.html), it seems to be the case but this needs to be looked into in-depth.
## The Execution of a Fluid Program
There are two ways to execute a Fluid program. When a program is executed, it creates a protobuf message [`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/paddle/framework/framework.proto#L145) that describes the process and is conceptually like an [abstract syntax tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree).
There is a C++ class [`Executor`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h), which runs a `ProgramDesc`, similar to how an interpreter runs a Python program.
Fluid is moving towards the direction of a compiler, which is explain in more detail later in this article.
## Backward Compatibility of Fluid
Given all the advantages from the removal of the concept of a *model*, hardware manufacturers might still prefer the existence of the concept of a model, so it would be easier for them to support multiple frameworks all at once and could run a trained model during inference. For example, Nervana, a startup company acquired by Intel, has been working on an XPU that reads the models in the format known as [n-graph](https://github.com/NervanaSystems/ngraph). Similarly, [Movidius](https://www.movidius.com/) is producing a mobile deep learning chip that reads and runs graphs of operators. The well-known [ONNX](https://github.com/onnx/onnx) is also a file format of graphs of operators.
For Fluid, we can write a converter that extracts the parts in the `ProgramDesc` protobuf message, converts them into a graph of operators, and exports the graph into the ONNX or n-graph format.
## Towards a Deep Learning Language and the Compiler
We can change the `if-then-else` and loop structure a little bit in the above Fluid example programs, to make it into a new programming language, different than Python.
Even if we do not invent a new language, as long as we get the `ProgramDesc` message filled in, we can write a transpiler, which translates each invocation to an operator, into a C++ call to a kernel function of that operator. For example, a transpiler that weaves the CUDA kernels outputs an NVIDIA-friendly C++ program, which can be built using `nvcc`. Another transpiler could generate MKL-friendly code that should be built using `icc` from Intel. More interestingly, we can translate a Fluid program into its distributed version of two `ProgramDesc` messages, one for running on the trainer process, and the other one for the parameter server. For more details of the last example, the [concurrent programming design](concurrent_programming.md) document would be a good pointer. The following figure explains the proposed two-stage process:
![](fluid-compiler.png)

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save