add activation ops under paddle.nn and paddle.nn.functional: ReLU, LogSoftmax (#23258)
parent
0307393721
commit
6dd9901b3c
@ -0,0 +1,107 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as functional
|
||||
|
||||
|
||||
def stable_softmax(x):
|
||||
shiftx = (x - np.max(x))
|
||||
exps = np.exp(shiftx)
|
||||
return exps / np.sum(exps)
|
||||
|
||||
|
||||
def ref_log_softmax(x, axis=None, dtype=None):
|
||||
x_t = x.copy()
|
||||
if dtype is not None:
|
||||
x_t = x_t.astype(dtype)
|
||||
if axis is None:
|
||||
axis = -1
|
||||
out = np.apply_along_axis(stable_softmax, axis, x_t)
|
||||
return np.log(out)
|
||||
|
||||
|
||||
class TestNNLogSoftmaxAPI(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.init_data()
|
||||
|
||||
def init_data(self):
|
||||
self.x_shape = [2, 3, 4, 5]
|
||||
self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
|
||||
|
||||
def check_api(self, place=fluid.CPUPlace(), axis=None):
|
||||
ref_out = ref_log_softmax(self.x, axis)
|
||||
|
||||
main_program = fluid.Program()
|
||||
mylogsoftmax = nn.LogSoftmax(axis)
|
||||
with fluid.program_guard(main_program):
|
||||
x = fluid.data(name='x', shape=self.x_shape)
|
||||
y = mylogsoftmax(x)
|
||||
exe = fluid.Executor(place)
|
||||
out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
|
||||
self.assertTrue(np.allclose(out[0], ref_out))
|
||||
|
||||
with fluid.dygraph.guard(place):
|
||||
x = fluid.dygraph.to_variable(self.x)
|
||||
y = mylogsoftmax(x)
|
||||
self.assertTrue(np.allclose(y.numpy(), ref_out))
|
||||
|
||||
def test_check_api(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for place in places:
|
||||
for axis in [None, 2]:
|
||||
self.check_api(place, axis)
|
||||
|
||||
|
||||
class TestNNFunctionalLogSoftmaxAPI(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.init_data()
|
||||
|
||||
def init_data(self):
|
||||
self.x_shape = [2, 3, 4, 5]
|
||||
self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
|
||||
|
||||
def check_api(self, place=fluid.CPUPlace(), axis=None, dtype=None):
|
||||
ref_out = ref_log_softmax(self.x, axis, dtype)
|
||||
main_program = fluid.Program()
|
||||
mylogsoftmax = nn.LogSoftmax(axis)
|
||||
with fluid.program_guard(main_program):
|
||||
x = fluid.data(name='x', shape=self.x_shape)
|
||||
y = functional.log_softmax(x, axis, dtype)
|
||||
exe = fluid.Executor(place)
|
||||
out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
|
||||
self.assertTrue(np.allclose(out[0], ref_out))
|
||||
|
||||
with fluid.dygraph.guard(place):
|
||||
x = fluid.dygraph.to_variable(self.x)
|
||||
y = functional.log_softmax(x, axis, dtype)
|
||||
self.assertTrue(np.allclose(y.numpy(), ref_out))
|
||||
|
||||
def test_check_api(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for place in places:
|
||||
self.check_api(place, None, None)
|
||||
self.check_api(place, None, np.float64)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue