|
|
|
@ -722,9 +722,10 @@ class TestCRFModel(unittest.TestCase):
|
|
|
|
|
# test fetch all the variables of global_block
|
|
|
|
|
|
|
|
|
|
import paddle.dataset.flowers as flowers
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def lenet(data, class_dim):
|
|
|
|
|
def Lenet(data, class_dim):
|
|
|
|
|
conv1 = fluid.layers.conv2d(data, 32, 5, 1, act=None)
|
|
|
|
|
bn1 = fluid.layers.batch_norm(conv1, act='relu')
|
|
|
|
|
pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
|
|
|
|
@ -774,25 +775,25 @@ class TestFetchOp(unittest.TestCase):
|
|
|
|
|
fetch_list = []
|
|
|
|
|
all_vars = main.global_block().vars
|
|
|
|
|
for k, v in all_vars.iteritems():
|
|
|
|
|
if 'velocity' not in k:
|
|
|
|
|
if 'tmp' not in k and k[0] is not '_' or v.persistable:
|
|
|
|
|
fetch_list.append(k)
|
|
|
|
|
|
|
|
|
|
for data in train_inputs:
|
|
|
|
|
ret = pe.run(fetch_list, feed=feeder.feed(data))
|
|
|
|
|
for i in range(len(fetch_list)):
|
|
|
|
|
print("%s - %s" % (fetch_list[i], np.sum(ret[i])))
|
|
|
|
|
assert not math.isnan(np.sum(ret[i])) and \
|
|
|
|
|
not math.isinf(np.sum(ret[i]))
|
|
|
|
|
|
|
|
|
|
def test_update_sparse_parameter(self):
|
|
|
|
|
tst_reader = paddle.batch(flowers.test(use_xmap=False), batch_size=16)
|
|
|
|
|
tst_reader_iter = tst_reader()
|
|
|
|
|
|
|
|
|
|
seed = 100
|
|
|
|
|
iters = 4
|
|
|
|
|
iters = 3
|
|
|
|
|
train_inputs = []
|
|
|
|
|
for i in range(iters):
|
|
|
|
|
train_inputs.append(tst_reader_iter.next())
|
|
|
|
|
|
|
|
|
|
self.parallel_exe(train_inputs, seed)
|
|
|
|
|
self.parallel_exe(train_inputs, seed=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|