|
|
|
@ -14,6 +14,7 @@
|
|
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
import unittest
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
@ -154,5 +155,197 @@ class TestLRNOpError(unittest.TestCase):
|
|
|
|
|
self.assertRaises(TypeError, fluid.layers.lrn, in_w)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestLocalResponseNormFAPI(unittest.TestCase):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
np.random.seed(123)
|
|
|
|
|
self.places = [fluid.CPUPlace()]
|
|
|
|
|
if core.is_compiled_with_cuda():
|
|
|
|
|
self.places.append(fluid.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
def check_static_3d_input(self, place):
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
in_np1 = np.random.random([3, 40, 40]).astype("float32")
|
|
|
|
|
in_np2 = np.transpose(in_np1, (0, 2, 1))
|
|
|
|
|
|
|
|
|
|
input1 = fluid.data(
|
|
|
|
|
name="input1", shape=[3, 40, 40], dtype="float32")
|
|
|
|
|
input2 = fluid.data(
|
|
|
|
|
name="input2", shape=[3, 40, 40], dtype="float32")
|
|
|
|
|
res1 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=input1, size=5, data_format='NCL')
|
|
|
|
|
res2 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=input2, size=5, data_format='NLC')
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
fetches = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={"input1": in_np1,
|
|
|
|
|
"input2": in_np2},
|
|
|
|
|
fetch_list=[res1, res2])
|
|
|
|
|
|
|
|
|
|
fetches1_tran = np.transpose(fetches[1], (0, 2, 1))
|
|
|
|
|
self.assertTrue(np.allclose(fetches[0], fetches1_tran))
|
|
|
|
|
|
|
|
|
|
def check_static_4d_input(self, place):
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
input1 = fluid.data(
|
|
|
|
|
name="input1", shape=[3, 3, 40, 40], dtype="float32")
|
|
|
|
|
input2 = fluid.data(
|
|
|
|
|
name="input2", shape=[3, 40, 40, 3], dtype="float32")
|
|
|
|
|
|
|
|
|
|
res1 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=input1, size=5, data_format='NCHW')
|
|
|
|
|
res2 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=input2, size=5, data_format='NHWC')
|
|
|
|
|
|
|
|
|
|
in_np1 = np.random.random([3, 3, 40, 40]).astype("float32")
|
|
|
|
|
in_np2 = np.transpose(in_np1, (0, 2, 3, 1))
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
fetches = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={"input1": in_np1,
|
|
|
|
|
"input2": in_np2},
|
|
|
|
|
fetch_list=[res1, res2])
|
|
|
|
|
|
|
|
|
|
fetches1_tran = np.transpose(fetches[1], (0, 3, 1, 2))
|
|
|
|
|
self.assertTrue(np.allclose(fetches[0], fetches1_tran))
|
|
|
|
|
|
|
|
|
|
def check_static_5d_input(self, place):
|
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
|
input1 = fluid.data(
|
|
|
|
|
name="input1", shape=[3, 3, 3, 40, 40], dtype="float32")
|
|
|
|
|
input2 = fluid.data(
|
|
|
|
|
name="input2", shape=[3, 3, 40, 40, 3], dtype="float32")
|
|
|
|
|
res1 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=input1, size=5, data_format='NCDHW')
|
|
|
|
|
res2 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=input2, size=5, data_format='NDHWC')
|
|
|
|
|
|
|
|
|
|
in_np1 = np.random.random([3, 3, 3, 40, 40]).astype("float32")
|
|
|
|
|
in_np2 = np.transpose(in_np1, (0, 2, 3, 4, 1))
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
fetches = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={"input1": in_np1,
|
|
|
|
|
"input2": in_np2},
|
|
|
|
|
fetch_list=[res1, res2])
|
|
|
|
|
|
|
|
|
|
fetches1_tran = np.transpose(fetches[1], (0, 4, 1, 2, 3))
|
|
|
|
|
self.assertTrue(np.allclose(fetches[0], fetches1_tran))
|
|
|
|
|
|
|
|
|
|
def test_static(self):
|
|
|
|
|
for place in self.places:
|
|
|
|
|
self.check_static_3d_input(place=place)
|
|
|
|
|
self.check_static_4d_input(place=place)
|
|
|
|
|
self.check_static_5d_input(place=place)
|
|
|
|
|
|
|
|
|
|
def check_dygraph_3d_input(self, place):
|
|
|
|
|
with fluid.dygraph.guard(place):
|
|
|
|
|
in_np1 = np.random.random([3, 40, 40]).astype("float32")
|
|
|
|
|
in_np2 = np.transpose(in_np1, (0, 2, 1))
|
|
|
|
|
|
|
|
|
|
in1 = paddle.to_tensor(in_np1)
|
|
|
|
|
in2 = paddle.to_tensor(in_np2)
|
|
|
|
|
|
|
|
|
|
res1 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=in1, size=5, data_format='NCL')
|
|
|
|
|
res2 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=in2, size=5, data_format='NLC')
|
|
|
|
|
|
|
|
|
|
res2_tran = np.transpose(res2.numpy(), (0, 2, 1))
|
|
|
|
|
self.assertTrue(np.allclose(res1.numpy(), res2_tran))
|
|
|
|
|
|
|
|
|
|
def check_dygraph_4d_input(self, place):
|
|
|
|
|
with fluid.dygraph.guard(place):
|
|
|
|
|
in_np1 = np.random.random([3, 3, 40, 40]).astype("float32")
|
|
|
|
|
in_np2 = np.transpose(in_np1, (0, 2, 3, 1))
|
|
|
|
|
|
|
|
|
|
in1 = paddle.to_tensor(in_np1)
|
|
|
|
|
in2 = paddle.to_tensor(in_np2)
|
|
|
|
|
|
|
|
|
|
res1 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=in1, size=5, data_format='NCHW')
|
|
|
|
|
res2 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=in2, size=5, data_format='NHWC')
|
|
|
|
|
|
|
|
|
|
res2_tran = np.transpose(res2.numpy(), (0, 3, 1, 2))
|
|
|
|
|
self.assertTrue(np.allclose(res1.numpy(), res2_tran))
|
|
|
|
|
|
|
|
|
|
def check_dygraph_5d_input(self, place):
|
|
|
|
|
with fluid.dygraph.guard(place):
|
|
|
|
|
in_np1 = np.random.random([3, 3, 3, 40, 40]).astype("float32")
|
|
|
|
|
in_np2 = np.transpose(in_np1, (0, 2, 3, 4, 1))
|
|
|
|
|
|
|
|
|
|
in1 = paddle.to_tensor(in_np1)
|
|
|
|
|
in2 = paddle.to_tensor(in_np2)
|
|
|
|
|
|
|
|
|
|
res1 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=in1, size=5, data_format='NCDHW')
|
|
|
|
|
res2 = paddle.nn.functional.local_response_norm(
|
|
|
|
|
x=in2, size=5, data_format='NDHWC')
|
|
|
|
|
|
|
|
|
|
res2_tran = np.transpose(res2.numpy(), (0, 4, 1, 2, 3))
|
|
|
|
|
self.assertTrue(np.allclose(res1.numpy(), res2_tran))
|
|
|
|
|
|
|
|
|
|
def test_dygraph(self):
|
|
|
|
|
for place in self.places:
|
|
|
|
|
self.check_dygraph_3d_input(place)
|
|
|
|
|
self.check_dygraph_4d_input(place)
|
|
|
|
|
self.check_dygraph_5d_input(place)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestLocalResponseNormFAPIError(unittest.TestCase):
|
|
|
|
|
def test_errors(self):
|
|
|
|
|
with program_guard(Program(), Program()):
|
|
|
|
|
|
|
|
|
|
def test_Variable():
|
|
|
|
|
# the input of lrn must be Variable.
|
|
|
|
|
x1 = fluid.create_lod_tensor(
|
|
|
|
|
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
|
|
|
|
|
paddle.nn.functional.local_response_norm(x1, size=5)
|
|
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_Variable)
|
|
|
|
|
|
|
|
|
|
def test_datatype():
|
|
|
|
|
x = fluid.data(name='x', shape=[3, 4, 5, 6], dtype="int32")
|
|
|
|
|
paddle.nn.functional.local_response_norm(x, size=5)
|
|
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_datatype)
|
|
|
|
|
|
|
|
|
|
def test_dataformat():
|
|
|
|
|
x = fluid.data(name='x', shape=[3, 4, 5, 6], dtype="float32")
|
|
|
|
|
paddle.nn.functional.local_response_norm(
|
|
|
|
|
x, size=5, data_format="NCTHW")
|
|
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, test_dataformat)
|
|
|
|
|
|
|
|
|
|
def test_dim():
|
|
|
|
|
x = fluid.data(name='x', shape=[3, 4], dtype="float32")
|
|
|
|
|
paddle.nn.functional.local_response_norm(x, size=5)
|
|
|
|
|
|
|
|
|
|
self.assertRaises(ValueError, test_dim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestLocalResponseNormCAPI(unittest.TestCase):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
np.random.seed(123)
|
|
|
|
|
self.places = [fluid.CPUPlace()]
|
|
|
|
|
if core.is_compiled_with_cuda():
|
|
|
|
|
self.places.append(fluid.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
def test_dygraph(self):
|
|
|
|
|
for place in self.places:
|
|
|
|
|
with fluid.dygraph.guard(place):
|
|
|
|
|
in1 = paddle.rand(shape=(3, 3, 40, 40), dtype="float32")
|
|
|
|
|
in2 = paddle.transpose(in1, [0, 2, 3, 1])
|
|
|
|
|
|
|
|
|
|
m1 = paddle.nn.LocalResponseNorm(size=5, data_format='NCHW')
|
|
|
|
|
m2 = paddle.nn.LocalResponseNorm(size=5, data_format='NHWC')
|
|
|
|
|
|
|
|
|
|
res1 = m1(in1)
|
|
|
|
|
res2 = m2(in2)
|
|
|
|
|
|
|
|
|
|
res2_tran = np.transpose(res2.numpy(), (0, 3, 1, 2))
|
|
|
|
|
self.assertTrue(np.allclose(res1.numpy(), res2_tran))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
unittest.main()
|
|
|
|
|