Make fuse_all_reduce_op_pass support mix_precision (#17652)
parent
55baeceddb
commit
7453857324
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,91 @@
|
|||||||
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import paddle.fluid.core as core
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import unittest
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
from simple_nets import init_data
|
||||||
|
from parallel_executor_test_base import TestParallelExecutorBase
|
||||||
|
|
||||||
|
batch_size = 12
|
||||||
|
img_shape = [1, 28, 28]
|
||||||
|
|
||||||
|
|
||||||
|
def loss_net(hidden, label):
|
||||||
|
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
|
||||||
|
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||||
|
avg_loss = fluid.layers.mean(loss)
|
||||||
|
return avg_loss
|
||||||
|
|
||||||
|
|
||||||
|
def conv_net(use_feed):
|
||||||
|
img = fluid.layers.data(name='image', shape=img_shape, dtype='float16')
|
||||||
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||||
|
|
||||||
|
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
||||||
|
input=img,
|
||||||
|
filter_size=5,
|
||||||
|
num_filters=20,
|
||||||
|
pool_size=2,
|
||||||
|
pool_stride=2,
|
||||||
|
act="relu")
|
||||||
|
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
|
||||||
|
|
||||||
|
conv_pool_1 = fluid.layers.cast(conv_pool_1, np.float32)
|
||||||
|
conv_pool_2 = fluid.nets.simple_img_conv_pool(
|
||||||
|
input=conv_pool_1,
|
||||||
|
filter_size=5,
|
||||||
|
num_filters=50,
|
||||||
|
pool_size=2,
|
||||||
|
pool_stride=2,
|
||||||
|
act="relu")
|
||||||
|
hidden = fluid.layers.cast(conv_pool_2, np.float32)
|
||||||
|
return loss_net(hidden, label)
|
||||||
|
|
||||||
|
|
||||||
|
def _optimizer(learning_rate=1e-6):
|
||||||
|
optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
|
||||||
|
return optimizer
|
||||||
|
|
||||||
|
|
||||||
|
class TestResnet(TestParallelExecutorBase):
|
||||||
|
def check_model(self, use_cuda):
|
||||||
|
img, label = init_data(
|
||||||
|
batch_size=batch_size, img_shape=img_shape, label_range=9)
|
||||||
|
img = np.float16(img).view(np.uint16)
|
||||||
|
feed_dict = {"image": img, "label": label}
|
||||||
|
|
||||||
|
TestParallelExecutorBase.check_network_convergence(
|
||||||
|
conv_net,
|
||||||
|
feed_dict=feed_dict,
|
||||||
|
iter=10,
|
||||||
|
use_cuda=use_cuda,
|
||||||
|
fuse_all_reduce_ops=True,
|
||||||
|
optimizer=_optimizer)
|
||||||
|
|
||||||
|
def test_model(self):
|
||||||
|
if core.is_compiled_with_cuda():
|
||||||
|
self.check_model(True)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue