enable mkldnn benchmark with googlenet

release/0.11.0
tensor-tang 8 years ago
parent bce1c03a90
commit 74dca2733d

@ -5,6 +5,7 @@ height = 224
width = 224 width = 224
num_class = 1000 num_class = 1000
batch_size = get_config_arg('batch_size', int, 128) batch_size = get_config_arg('batch_size', int, 128)
use_gpu = get_config_arg('use_gpu', bool, True)
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
define_py_data_sources2( define_py_data_sources2(
@ -16,6 +17,8 @@ settings(
learning_method=MomentumOptimizer(0.9), learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * batch_size)) regularization=L2Regularization(0.0005 * batch_size))
conv_projection = conv_projection if use_gpu else img_conv_layer
def inception2(name, input, channels, \ def inception2(name, input, channels, \
filter1, filter1,
filter3R, filter3, filter3R, filter3,
@ -138,7 +141,7 @@ def inception(name, input, channels, \
cat = concat_layer( cat = concat_layer(
name=name, name=name,
input=[cov1, cov3, cov5, covprj], input=[cov1, cov3, cov5, covprj],
bias_attr=True, bias_attr=True if use_gpu else False,
act=ReluActivation()) act=ReluActivation())
return cat return cat

@ -40,6 +40,7 @@ fi
for use_mkldnn in True False; do for use_mkldnn in True False; do
for batchsize in 64 128 256; do for batchsize in 64 128 256; do
train vgg 19 $batchsize $use_mkldnn train vgg 19 $batchsize $use_mkldnn
train resnet 50 $batchsize $use_mkldnn train resnet 50 $batchsize $use_mkldnn
train googlenet v1 $batchsize $use_mkldnn
done done
done done

Loading…
Cancel
Save