parent
628bb27a51
commit
74f7aff397
@ -0,0 +1,87 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import numpy as np
|
||||
import paddle.v2.fluid as fluid
|
||||
import paddle.v2.fluid.layers.detection as detection
|
||||
import paddle.v2.fluid.core as core
|
||||
import unittest
|
||||
|
||||
|
||||
def prior_box_output(data_shape):
|
||||
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
|
||||
conv1 = fluid.layers.conv2d(
|
||||
input=images, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
|
||||
conv2 = fluid.layers.conv2d(
|
||||
input=conv1, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
|
||||
conv3 = fluid.layers.conv2d(
|
||||
input=conv2, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
|
||||
conv4 = fluid.layers.conv2d(
|
||||
input=conv3, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
|
||||
conv5 = fluid.layers.conv2d(
|
||||
input=conv4, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
|
||||
|
||||
box, var = detection.prior_boxes(
|
||||
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
|
||||
image=images,
|
||||
min_ratio=20,
|
||||
max_ratio=90,
|
||||
# steps=[8, 16, 32, 64, 100, 300],
|
||||
aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
|
||||
base_size=300,
|
||||
offset=0.5,
|
||||
flip=True,
|
||||
clip=True)
|
||||
return box, var
|
||||
|
||||
|
||||
def main(use_cuda):
|
||||
if use_cuda: # prior_box only support CPU.
|
||||
return
|
||||
|
||||
box, var = prior_box_output(data_shape=[3, 224, 224])
|
||||
|
||||
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
batch = [128]
|
||||
|
||||
for i in range(1):
|
||||
# print("iteration : %d" % i)
|
||||
x = np.random.random(batch + data_shape).astype("float32")
|
||||
tensor_x = core.LoDTensor()
|
||||
tensor_x.set(x, place)
|
||||
box, var = exe.run(fluid.default_main_program(),
|
||||
feed={'pixel': tensor_x},
|
||||
fetch_list=[box, var])
|
||||
box_arr = np.array(box)
|
||||
var_arr = np.array(var)
|
||||
assert box_arr.shape[1] == 4
|
||||
assert var_arr.shape[1] == 4
|
||||
assert box_arr.shape[0] == var_arr.shape[0]
|
||||
|
||||
|
||||
class TestFitALine(unittest.TestCase):
|
||||
def test_cpu(self):
|
||||
with self.program_scope_guard():
|
||||
main(use_cuda=False)
|
||||
|
||||
def test_cuda(self):
|
||||
with self.program_scope_guard():
|
||||
main(use_cuda=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue