parent
628bb27a51
commit
74f7aff397
@ -0,0 +1,87 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
import numpy as np
|
||||||
|
import paddle.v2.fluid as fluid
|
||||||
|
import paddle.v2.fluid.layers.detection as detection
|
||||||
|
import paddle.v2.fluid.core as core
|
||||||
|
import unittest
|
||||||
|
|
||||||
|
|
||||||
|
def prior_box_output(data_shape):
|
||||||
|
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
|
||||||
|
conv1 = fluid.layers.conv2d(
|
||||||
|
input=images, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
|
||||||
|
conv2 = fluid.layers.conv2d(
|
||||||
|
input=conv1, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
|
||||||
|
conv3 = fluid.layers.conv2d(
|
||||||
|
input=conv2, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
|
||||||
|
conv4 = fluid.layers.conv2d(
|
||||||
|
input=conv3, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
|
||||||
|
conv5 = fluid.layers.conv2d(
|
||||||
|
input=conv4, num_filters=3, filter_size=3, stride=2, use_cudnn=False)
|
||||||
|
|
||||||
|
box, var = detection.prior_boxes(
|
||||||
|
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
|
||||||
|
image=images,
|
||||||
|
min_ratio=20,
|
||||||
|
max_ratio=90,
|
||||||
|
# steps=[8, 16, 32, 64, 100, 300],
|
||||||
|
aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
|
||||||
|
base_size=300,
|
||||||
|
offset=0.5,
|
||||||
|
flip=True,
|
||||||
|
clip=True)
|
||||||
|
return box, var
|
||||||
|
|
||||||
|
|
||||||
|
def main(use_cuda):
|
||||||
|
if use_cuda: # prior_box only support CPU.
|
||||||
|
return
|
||||||
|
|
||||||
|
box, var = prior_box_output(data_shape=[3, 224, 224])
|
||||||
|
|
||||||
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
exe.run(fluid.default_startup_program())
|
||||||
|
batch = [128]
|
||||||
|
|
||||||
|
for i in range(1):
|
||||||
|
# print("iteration : %d" % i)
|
||||||
|
x = np.random.random(batch + data_shape).astype("float32")
|
||||||
|
tensor_x = core.LoDTensor()
|
||||||
|
tensor_x.set(x, place)
|
||||||
|
box, var = exe.run(fluid.default_main_program(),
|
||||||
|
feed={'pixel': tensor_x},
|
||||||
|
fetch_list=[box, var])
|
||||||
|
box_arr = np.array(box)
|
||||||
|
var_arr = np.array(var)
|
||||||
|
assert box_arr.shape[1] == 4
|
||||||
|
assert var_arr.shape[1] == 4
|
||||||
|
assert box_arr.shape[0] == var_arr.shape[0]
|
||||||
|
|
||||||
|
|
||||||
|
class TestFitALine(unittest.TestCase):
|
||||||
|
def test_cpu(self):
|
||||||
|
with self.program_scope_guard():
|
||||||
|
main(use_cuda=False)
|
||||||
|
|
||||||
|
def test_cuda(self):
|
||||||
|
with self.program_scope_guard():
|
||||||
|
main(use_cuda=True)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue