|
|
|
@ -34,7 +34,7 @@ __global__ void LabelSmoothRunDistKernel(const int N, const float epsilon,
|
|
|
|
|
const T* dist_data, T* dst) {
|
|
|
|
|
int idx = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
|
for (; idx < N; idx += blockDim.x * gridDim.x) {
|
|
|
|
|
int dist_idx = idx - (idx / dist_numel) * dist_numel;
|
|
|
|
|
int dist_idx = idx % dist_numel;
|
|
|
|
|
dst[idx] = static_cast<T>(1 - epsilon) * src[idx] +
|
|
|
|
|
static_cast<T>(epsilon) * dist_data[dist_idx];
|
|
|
|
|
}
|
|
|
|
@ -56,7 +56,7 @@ class LabelSmoothGPUKernel : public framework::OpKernel<T> {
|
|
|
|
|
auto* out_t = ctx.Output<framework::LoDTensor>("Out");
|
|
|
|
|
auto* in_t = ctx.Input<framework::LoDTensor>("X");
|
|
|
|
|
auto* dist_t = ctx.Input<framework::Tensor>("PriorDist");
|
|
|
|
|
auto label_dim = in_t->dims()[1];
|
|
|
|
|
auto label_dim = in_t->dims()[in_t->dims().size() - 1];
|
|
|
|
|
auto epsilon = ctx.Attr<float>("epsilon");
|
|
|
|
|
auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
|
|
|
|
|
auto size_prob = in_t->numel();
|
|
|
|
|