|
|
|
@ -540,6 +540,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
workspace_size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!is_sys_pad) {
|
|
|
|
|
std::vector<int> starts(transformed_input_channel.dims().size(), 0);
|
|
|
|
|
std::vector<int> axes(transformed_input_channel.dims().size(), 0);
|
|
|
|
|
|
|
|
|
@ -558,6 +559,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
ctx, &transformed_input_grad, &transformed_input_grad_channel,
|
|
|
|
|
starts, axes);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (channel_last) {
|
|
|
|
|
TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
|
|
|
|
@ -982,6 +984,7 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
workspace_size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!is_sys_pad) {
|
|
|
|
|
// reverse padded input
|
|
|
|
|
std::vector<int> starts(X->dims().size(), 0);
|
|
|
|
|
std::vector<int> axes(X->dims().size(), 0);
|
|
|
|
@ -997,6 +1000,7 @@ class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
Slice_2<paddle::platform::CUDADeviceContext, T, 5>(
|
|
|
|
|
ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (channel_last) {
|
|
|
|
|
TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
|
|
|
|
|
ctx, &transformed_dX_channel, dX);
|
|
|
|
|