|
|
|
@ -494,17 +494,22 @@ class TestModelFunction(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
model.summary(input_size=(20))
|
|
|
|
|
model.summary(input_size=[(20)])
|
|
|
|
|
model.summary(input_size=(20), batch_size=2)
|
|
|
|
|
model.summary(input_size=(20), dtype='float32')
|
|
|
|
|
|
|
|
|
|
def test_summary_nlp(self):
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
|
|
|
|
|
paddle.summary(nlp_net, (1, 2))
|
|
|
|
|
nlp_net = paddle.nn.GRU(input_size=2,
|
|
|
|
|
hidden_size=3,
|
|
|
|
|
num_layers=3,
|
|
|
|
|
direction="bidirectional")
|
|
|
|
|
paddle.summary(nlp_net, (1, 1, 2))
|
|
|
|
|
rnn = paddle.nn.LSTM(16, 32, 2)
|
|
|
|
|
paddle.summary(rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
|
|
|
|
|
|
|
|
|
|
def test_summary_error(self):
|
|
|
|
|
with self.assertRaises(TypeError):
|
|
|
|
|
nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
|
|
|
|
|
paddle.summary(nlp_net, (1, '2'))
|
|
|
|
|
paddle.summary(nlp_net, (1, 1, '2'))
|
|
|
|
|
|
|
|
|
|
with self.assertRaises(ValueError):
|
|
|
|
|
nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
|
|
|
|
@ -512,7 +517,7 @@ class TestModelFunction(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
nlp_net = paddle.nn.GRU(input_size=2, hidden_size=3, num_layers=3)
|
|
|
|
|
paddle.summary(nlp_net, (1, 2))
|
|
|
|
|
paddle.summary(nlp_net, (1, 1, 2))
|
|
|
|
|
|
|
|
|
|
def test_export_deploy_model(self):
|
|
|
|
|
for dynamic in [True, False]:
|
|
|
|
|