Merge branch 'develop' of github.com:PaddlePaddle/Paddle into split_send_op

helinwang-patch-1
Yancey1989 7 years ago
commit 79af7cc9d3

@ -36,6 +36,7 @@ include(simd)
################################ Configurations ####################################### ################################ Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND}) option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AMD_GPU "Compile PaddlePaddle with AMD GPU" OFF)
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND}) option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKL "Compile PaddlePaddle with MKL support." ${AVX_FOUND}) option(WITH_MKL "Compile PaddlePaddle with MKL support." ${AVX_FOUND})
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON) option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
@ -180,6 +181,11 @@ if(WITH_GPU)
include(cuda) include(cuda)
endif(WITH_GPU) endif(WITH_GPU)
if(WITH_AMD_GPU)
find_package(HIP)
include(hip)
endif(WITH_AMD_GPU)
if(WITH_MKLML) if(WITH_MKLML)
list(APPEND EXTERNAL_LIBS ${MKLML_IOMP_LIB}) list(APPEND EXTERNAL_LIBS ${MKLML_IOMP_LIB})
endif() endif()

@ -18,12 +18,13 @@ import sys
import time import time
import numpy as np import numpy as np
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.fluid as fluid import paddle.fluid as fluid
import paddle.v2.fluid.core as core import paddle.fluid.core as core
import paddle.v2.fluid.profiler as profiler import paddle.fluid.profiler as profiler
import argparse import argparse
import functools import functools
import os import os
from paddle.fluid import debuger
def str2bool(v): def str2bool(v):
@ -182,28 +183,27 @@ def main():
start_time = time.time() start_time = time.time()
num_samples = 0 num_samples = 0
train_pass_acc.reset() train_pass_acc.reset()
with profiler.profiler("CPU", 'total') as prof: for batch_id, data in enumerate(train_reader()):
for batch_id, data in enumerate(train_reader()): ts = time.time()
ts = time.time() img_data = np.array(
img_data = np.array( map(lambda x: x[0].reshape(data_shape), data)).astype(
map(lambda x: x[0].reshape(data_shape), data)).astype( "float32")
"float32") y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape([-1, 1])
y_data = y_data.reshape([-1, 1])
loss, acc, b_size = exe.run(
loss, acc, b_size = exe.run( trainer_prog,
trainer_prog, feed={"pixel": img_data,
feed={"pixel": img_data, "label": y_data},
"label": y_data}, fetch_list=[avg_cost, batch_acc, batch_size])
fetch_list=[avg_cost, batch_acc, batch_size]) iters += 1
iters += 1 num_samples += len(data)
num_samples += len(data) train_pass_acc.add(value=acc, weight=b_size)
train_pass_acc.add(value=acc, weight=b_size) print(
print( "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s" % (pass_id, iters, loss, acc,
% (pass_id, iters, loss, acc, len(data) / (time.time() - ts))
len(data) / (time.time() - ts)) ) # The accuracy is the accumulation of batches, but not the current batch.
) # The accuracy is the accumulation of batches, but not the current batch.
pass_elapsed = time.time() - start_time pass_elapsed = time.time() - start_time
pass_train_acc = train_pass_acc.eval() pass_train_acc = train_pass_acc.eval()
@ -254,9 +254,7 @@ def main():
pserver_prog = t.get_pserver_program(current_endpoint) pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint, pserver_startup = t.get_startup_program(current_endpoint,
pserver_prog) pserver_prog)
print("starting server side startup")
exe.run(pserver_startup) exe.run(pserver_startup)
print("starting parameter server...")
exe.run(pserver_prog) exe.run(pserver_prog)
elif training_role == "TRAINER": elif training_role == "TRAINER":
# Parameter initialization # Parameter initialization

@ -292,14 +292,18 @@ def run_benchmark(cluster_spec, server):
return np.mean(test_accs) return np.mean(test_accs)
config = tf.ConfigProto( config = tf.ConfigProto(
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1,
log_device_placement=True)
config.gpu_options.allow_growth = True config.gpu_options.allow_growth = True
hooks = [tf.train.StopAtStepHook(last_step=1000000)] hooks = [tf.train.StopAtStepHook(last_step=1000000)]
with tf.train.MonitoredTrainingSession( with tf.train.MonitoredTrainingSession(
master=server.target, is_chief=(args.task_index == 0), master=server.target,
hooks=hooks) as sess: is_chief=(args.task_index == 0),
hooks=hooks,
config=config) as sess:
iters, num_samples, start_time = 0, 0, 0.0 iters, num_samples, start_time = 0, 0, 0.0
for pass_id in range(args.num_passes): for pass_id in range(args.num_passes):
# train # train

@ -57,11 +57,7 @@ if(NOT WITH_GOLANG)
add_definitions(-DPADDLE_WITHOUT_GOLANG) add_definitions(-DPADDLE_WITHOUT_GOLANG)
endif(NOT WITH_GOLANG) endif(NOT WITH_GOLANG)
if(NOT WITH_GPU) if(WITH_GPU)
add_definitions(-DHPPL_STUB_FUNC)
list(APPEND CMAKE_CXX_SOURCE_FILE_EXTENSIONS cu)
else()
add_definitions(-DPADDLE_WITH_CUDA) add_definitions(-DPADDLE_WITH_CUDA)
FIND_PACKAGE(CUDA REQUIRED) FIND_PACKAGE(CUDA REQUIRED)
@ -84,7 +80,14 @@ else()
# Include cuda and cudnn # Include cuda and cudnn
include_directories(${CUDNN_INCLUDE_DIR}) include_directories(${CUDNN_INCLUDE_DIR})
include_directories(${CUDA_TOOLKIT_INCLUDE}) include_directories(${CUDA_TOOLKIT_INCLUDE})
endif(NOT WITH_GPU) elseif(WITH_AMD_GPU)
add_definitions(-DPADDLE_WITH_HIP)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -D__HIP_PLATFORM_HCC__")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -D__HIP_PLATFORM_HCC__")
else()
add_definitions(-DHPPL_STUB_FUNC)
list(APPEND CMAKE_CXX_SOURCE_FILE_EXTENSIONS cu)
endif()
if (WITH_MKLML AND MKLML_IOMP_LIB) if (WITH_MKLML AND MKLML_IOMP_LIB)
message(STATUS "Enable Intel OpenMP with ${MKLML_IOMP_LIB}") message(STATUS "Enable Intel OpenMP with ${MKLML_IOMP_LIB}")

@ -24,7 +24,7 @@ set(BOOST_PROJECT "extern_boost")
# So we use 1.41.0 here. # So we use 1.41.0 here.
set(BOOST_VER "1.41.0") set(BOOST_VER "1.41.0")
set(BOOST_TAR "boost_1_41_0") set(BOOST_TAR "boost_1_41_0")
set(BOOST_URL "http://paddlepaddledeps.s3-website-us-west-1.amazonaws.com/${BOOST_TAR}.tar.gz") set(BOOST_URL "http://paddlepaddledeps.bj.bcebos.com/${BOOST_TAR}.tar.gz")
set(BOOST_SOURCES_DIR ${THIRD_PARTY_PATH}/boost) set(BOOST_SOURCES_DIR ${THIRD_PARTY_PATH}/boost)
set(BOOST_DOWNLOAD_DIR "${BOOST_SOURCES_DIR}/src/${BOOST_PROJECT}") set(BOOST_DOWNLOAD_DIR "${BOOST_SOURCES_DIR}/src/${BOOST_PROJECT}")
set(BOOST_INCLUDE_DIR "${BOOST_DOWNLOAD_DIR}/${BOOST_TAR}" CACHE PATH "boost include directory." FORCE) set(BOOST_INCLUDE_DIR "${BOOST_DOWNLOAD_DIR}/${BOOST_TAR}" CACHE PATH "boost include directory." FORCE)

@ -4,18 +4,33 @@ SET(EIGEN_SOURCE_DIR ${THIRD_PARTY_PATH}/eigen3)
SET(EIGEN_INCLUDE_DIR ${EIGEN_SOURCE_DIR}/src/extern_eigen3) SET(EIGEN_INCLUDE_DIR ${EIGEN_SOURCE_DIR}/src/extern_eigen3)
INCLUDE_DIRECTORIES(${EIGEN_INCLUDE_DIR}) INCLUDE_DIRECTORIES(${EIGEN_INCLUDE_DIR})
ExternalProject_Add( if(WITH_AMD_GPU)
extern_eigen3 ExternalProject_Add(
${EXTERNAL_PROJECT_LOG_ARGS} extern_eigen3
GIT_REPOSITORY "https://github.com/RLovelett/eigen.git" ${EXTERNAL_PROJECT_LOG_ARGS}
GIT_TAG 70661066beef694cadf6c304d0d07e0758825c10 GIT_REPOSITORY "https://github.com/sabreshao/hipeigen.git"
PREFIX ${EIGEN_SOURCE_DIR} GIT_TAG 0cba03ff9f8f9f70bbd92ac5857b031aa8fed6f9
UPDATE_COMMAND "" PREFIX ${EIGEN_SOURCE_DIR}
CONFIGURE_COMMAND "" UPDATE_COMMAND ""
BUILD_COMMAND "" CONFIGURE_COMMAND ""
INSTALL_COMMAND "" BUILD_COMMAND ""
TEST_COMMAND "" INSTALL_COMMAND ""
) TEST_COMMAND ""
)
else()
ExternalProject_Add(
extern_eigen3
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/RLovelett/eigen.git"
GIT_TAG 70661066beef694cadf6c304d0d07e0758825c10
PREFIX ${EIGEN_SOURCE_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
TEST_COMMAND ""
)
endif()
if (${CMAKE_VERSION} VERSION_LESS "3.3.0") if (${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/eigen3_dummy.c) set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/eigen3_dummy.c)

@ -317,6 +317,82 @@ function(nv_test TARGET_NAME)
endif() endif()
endfunction(nv_test) endfunction(nv_test)
function(hip_library TARGET_NAME)
if (WITH_AMD_GPU)
set(options STATIC static SHARED shared)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(hip_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(_sources ${hip_library_SRCS})
HIP_PREPARE_TARGET_COMMANDS(${TARGET_NAME} OBJ _generated_files _source_files ${_sources} HIPCC_OPTIONS ${_hipcc_options} HCC_OPTIONS ${_hcc_options} NVCC_OPTIONS ${_nvcc_options})
if(_source_files)
list(REMOVE_ITEM _sources ${_source_files})
endif()
if(hip_library_SRCS)
if (hip_library_SHARED OR hip_library_shared) # build *.so
add_library(${TARGET_NAME} SHARED ${_cmake_options} ${_generated_files} ${_sources})
set_target_properties(${TARGET_NAME} PROPERTIES LINKER_LANGUAGE HIP)
else()
add_library(${TARGET_NAME} STATIC ${_cmake_options} ${_generated_files} ${_sources})
set_target_properties(${TARGET_NAME} PROPERTIES LINKER_LANGUAGE CXX)
target_link_libraries(${TARGET_NAME} /opt/rocm/hip/lib/libhip_hcc.so /opt/rocm/hip/lib/libhip_device.a)
find_fluid_modules(${TARGET_NAME})
endif()
if (hip_library_DEPS)
add_dependencies(${TARGET_NAME} ${hip_library_DEPS})
target_link_libraries(${TARGET_NAME} ${hip_library_DEPS})
endif()
# cpplint code style
foreach(source_file ${hip_library_SRCS})
string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND hip_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
endif()
endforeach()
add_style_check_target(${TARGET_NAME} ${hip_library_SRCS} ${hip_library_HEADERS})
else(hip_library_SRCS)
if (hip_library_DEPS)
merge_static_libs(${TARGET_NAME} ${hip_library_DEPS})
else()
message(FATAL "Please specify source file or library in nv_library.")
endif()
endif(hip_library_SRCS)
endif()
endfunction(hip_library)
function(hip_binary TARGET_NAME)
if (WITH_AMD_GPU)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(hip_binary "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
hip_add_executable(${TARGET_NAME} ${hip_binary_SRCS})
if(hip_binary_DEPS)
target_link_libraries(${TARGET_NAME} ${hip_binary_DEPS})
add_dependencies(${TARGET_NAME} ${hip_binary_DEPS})
endif()
endif()
endfunction(hip_binary)
function(hip_test TARGET_NAME)
if (WITH_AMD_GPU AND WITH_TESTING)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(hip_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(_sources ${hip_test_SRCS})
HIP_PREPARE_TARGET_COMMANDS(${TARGET_NAME} OBJ _generated_files _source_files ${_sources} HIPCC_OPTIONS ${_hipcc_options} HCC_OPTIONS ${_hcc_options} NVCC_OPTIONS ${_nvcc_options})
if(_source_files)
list(REMOVE_ITEM _sources ${_source_files})
endif()
add_executable(${TARGET_NAME} ${_cmake_options} ${_generated_files} ${_sources})
set_target_properties(${TARGET_NAME} PROPERTIES LINKER_LANGUAGE HIP)
target_link_libraries(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main paddle_memory gtest gflags)
add_dependencies(${TARGET_NAME} ${hip_test_DEPS} paddle_gtest_main paddle_memory gtest gflags)
add_test(${TARGET_NAME} ${TARGET_NAME})
endif()
endfunction(hip_test)
function(go_library TARGET_NAME) function(go_library TARGET_NAME)
set(options STATIC static SHARED shared) set(options STATIC static SHARED shared)
set(oneValueArgs "") set(oneValueArgs "")

@ -0,0 +1,43 @@
if(NOT WITH_AMD_GPU)
return()
endif()
include_directories("/opt/rocm/include")
include_directories("/opt/rocm/hipblas/include")
include_directories("/opt/rocm/hiprand/include")
include_directories("/opt/rocm/rocrand/include")
include_directories("/opt/rocm/rccl/include")
include_directories("/opt/rocm/thrust")
list(APPEND EXTERNAL_LIBS "-L/opt/rocm/lib/ -lhip_hcc")
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -fPIC -DPADDLE_WITH_HIP -std=c++14" )
if(WITH_DSO)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_USE_DSO")
endif(WITH_DSO)
if(WITH_DOUBLE)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_TYPE_DOUBLE")
endif(WITH_DOUBLE)
if(WITH_TESTING)
set(HIP_HCC_FLAGS "${HIP_HCC_FLAGS} -DPADDLE_WITH_TESTING")
endif(WITH_TESTING)
if(CMAKE_BUILD_TYPE STREQUAL "Debug")
list(APPEND HIP_HCC_FLAGS ${CMAKE_CXX_FLAGS_DEBUG})
elseif(CMAKE_BUILD_TYPE STREQUAL "RelWithDebInfo")
list(APPEND HIP_HCC_FLAGS ${CMAKE_CXX_FLAGS_RELWITHDEBINFO})
elseif(CMAKE_BUILD_TYPE STREQUAL "MinSizeRel")
list(APPEND HIP_HCC_FLAGS ${CMAKE_CXX_FLAGS_MINSIZEREL})
endif()
if("x${HCC_HOME}" STREQUAL "x")
set(HCC_HOME "/opt/rocm/hcc")
endif()
set(CMAKE_HIP_LINK_EXECUTABLE "${HIP_HIPCC_CMAKE_LINKER_HELPER} ${HCC_HOME} <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES>")
set(CMAKE_HIP_CREATE_SHARED_LIBRARY "${HIP_HIPCC_CMAKE_LINKER_HELPER} ${HCC_HOME} <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES> -shared")
set(CMAKE_HIP_CREATE_SHARED_MODULE "${HIP_HIPCC_CMAKE_LINKER_HELPER} ${HCC_HOME} <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> <LINK_LIBRARIES> -shared")

@ -1 +1,2 @@
add_subdirectory(v2) add_subdirectory(v2)
add_subdirectory(fluid)

@ -0,0 +1,49 @@
if(NOT DEFINED SPHINX_THEME)
set(SPHINX_THEME default)
endif()
if(NOT DEFINED SPHINX_THEME_DIR)
set(SPHINX_THEME_DIR)
endif()
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
# HTML output director
set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.en.in"
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
sphinx_add_target(paddle_fluid_docs
html
${BINARY_BUILD_DIR_EN}
${SPHINX_CACHE_DIR_EN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_doctrees")
# HTML output directory
set(SPHINX_HTML_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.cn.in"
"${BINARY_BUILD_DIR_CN}/conf.py"
@ONLY)
sphinx_add_target(paddle_fluid_docs_cn
html
${BINARY_BUILD_DIR_CN}
${SPHINX_CACHE_DIR_CN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})

@ -0,0 +1,2 @@
安装与使用
------------

@ -0,0 +1,2 @@
Build and Install
------------

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

File diff suppressed because it is too large Load Diff

@ -5,7 +5,7 @@ This document describes the RNN (Recurrent Neural Network) operator and how it i
## RNN Algorithm Implementation ## RNN Algorithm Implementation
<p align="center"> <p align="center">
<img src="./images/rnn.jpg"/> <img src="./rnn.jpg"/>
</p> </p>
The above diagram shows an RNN unrolled into a full network. The above diagram shows an RNN unrolled into a full network.
@ -22,7 +22,7 @@ There are several important concepts here:
There could be local variables defined in each step-net. PaddlePaddle runtime realizes these variables in *step-scopes* which are created for each step. There could be local variables defined in each step-net. PaddlePaddle runtime realizes these variables in *step-scopes* which are created for each step.
<p align="center"> <p align="center">
<img src="./images/rnn.png"/><br/> <img src="./rnn.png"/><br/>
Figure 2 illustrates the RNN's data flow Figure 2 illustrates the RNN's data flow
</p> </p>
@ -49,7 +49,7 @@ or copy the memory value of the previous step to the current ex-memory variable.
### Usage in Python ### Usage in Python
For more information on Block, please refer to the [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md). For more information on Block, please refer to the [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/block.md).
We can define an RNN's step-net using a Block: We can define an RNN's step-net using a Block:
@ -93,7 +93,7 @@ For example, we could have a 2-level RNN, where the top level corresponds to par
The following figure illustrates feeding in text into the lower level, one sentence at a step, and the feeding in step outputs to the top level. The final top level output is about the whole text. The following figure illustrates feeding in text into the lower level, one sentence at a step, and the feeding in step outputs to the top level. The final top level output is about the whole text.
<p align="center"> <p align="center">
<img src="./images/2_level_rnn.png"/> <img src="./2_level_rnn.png"/>
</p> </p>
```python ```python
@ -149,5 +149,5 @@ If the `output_all_steps` is set to False, it will only output the final time st
<p align="center"> <p align="center">
<img src="images/rnn_2level_data.png"/> <img src="./rnn_2level_data.png"/>
</p> </p>

@ -0,0 +1,2 @@
设计思想
------------

@ -0,0 +1,2 @@
Design
------------

@ -0,0 +1,2 @@
开发标准
------------

@ -0,0 +1,4 @@
Development
------------
This is Development page

@ -0,0 +1,2 @@
FAQ
------------

@ -0,0 +1,2 @@
FAQ
------------

@ -0,0 +1,4 @@
新手入门
------------
新手入门

@ -0,0 +1,4 @@
GET STARTED
------------
This is get started page

@ -0,0 +1,145 @@
# Fluid 分布式版本使用指南
本篇文章将说明如何在PaddlePaddle Fluid版本下进行分布式训练的配置和执行以及将单机训练脚本改造成支持集群训练的版本
## 准备工作
* 可用的集群
包含一个或多个计算节点的集群每一个节点都能够执行PaddlePaddle的训练任务且拥有唯一的IP地址集群内的所有计算节点可以通过网络相互通信。
* 安装PaddlePaddle Fluid with Distribution版本
所有的计算节点上均需要按照分布式版本的PaddlePaddle, 在用于GPU等设备的机器上还需要额外安装好相应的驱动程序和CUDA的库。
**注意:**当前对外提供的PaddlePaddle版本并不支持分布式需要通过源码重新编译。编译和安装方法参见[编译和安装指南](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html)。
cmake编译命令中需要将WITH_DISTRIBUTE设置为ON下面是一个cmake编译指令示例
``` bash
cmake .. -DWITH_DOC=OFF -DWITH_GPU=OFF -DWITH_DISTRIBUTE=ON -DWITH_SWIG_PY=ON -DWITH_PYTHON=ON
```
## 更新训练脚本
这里,我们以[Deep Learing 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html)课程中的第一章 fit a line 为例,描述如何将单机训练脚本改造成支持集群训练的版本。
### 单机训练脚本示例
```python
import paddle.v2 as paddle
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(x=cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 20
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
PASS_NUM = 100
for pass_id in range(PASS_NUM):
fluid.io.save_persistables(exe, "./fit_a_line.model/")
fluid.io.load_persistables(exe, "./fit_a_line.model/")
for data in train_reader():
avg_loss_value, = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost])
if avg_loss_value[0] < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good.
exit(1)
```
我们创建了一个简单的全连接神经网络程序并且通过Fluid的Executor执行了100次迭代,现在我们需要将该单机版本的程序更新为分布式版本的程序。
### 介绍Parameter Server
在非分布式版本的训练脚本中只存在Trainer一种角色它不仅处理常规的计算任务也处理参数相关的计算、保存和优化任务。在分布式版本的训练过程中由于存在多个Trainer节点进行同样的数据计算任务因此需要有一个中心化的节点来统一处理参数相关的保存和分配。在PaddlePaddle中我们称这样的节点为[Parameter Server](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/dist_train/parameter_server.md)
**因此在分布式的Fluid环境中我们有两个角色需要创建分别是Parameter Server和Trainer。**
### 分布式训练
Fliud专门提供了工具[Distributed Transpiler](https://github.com/PaddlePaddle/Paddle/blob/ba65d54d9d3b41cd3c5171b00f476d4e60133ddb/doc/fluid/design/dist_train/distributed_architecture.md#distributed-transpiler)用于将单机版的训练程序转换为分布式版本的训练程序。工具背后的理念是找出程序的优化算子和梯度参数将他们分隔为两部分通过send/recv 操作算子进行连接,优化算子和梯度参数可以在优化器的minimize函数的返回值中获取到。
```python
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
```
将Distributed Transpiler、优化算子和梯度函数放在一个代码中如下
```python
... #define the program, cost, and create sgd optimizer
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) #get optimize OPs and gradient parameters
t = fluid.DistributeTranspiler() # create the transpiler instance
# slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
... #create executor
# in pserver, run this
#current_endpoint here means current pserver IP:PORT you wish to run on
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
exe.run(pserver_startup)
exe.run(pserver_prog)
# in trainer, run this
... # define data reader
exe.run(fluid.default_startup_program())
for pass_id in range(100):
for data in train_reader():
exe.run(t.get_trainer_program())
```
### 分布式训练脚本运行说明
分布式任务的运行需要将表格中说明的多个参数进行赋值:
| 参数名 | 值类型 | 说明 | 示例 |
|:-------------|:------|:---------------------------------------|:-------------|
| trainer_id | int | 当前训练节点的ID训练节点ID编号为0 - n-1 n为trainers的值 | 0/1/2/3 |
| pservers | str | parameter server 列表 | 127.0.0.1:6710,127.0.0.1:6711 |
| trainers | int | 训练节点的总个数,>0的数字 | 4 |
| server_endpoint | str | 当前所起的服务节点的IP:PORT | 127.0.0.1:8789 |
| training_role | str | 节点角色, TRAINER/PSERVER | PSERVER |
**注意:** ```training_role```是用来区分当前所起服务的角色的用于训练程序中用户可根据需要自行定义其他参数为fluid.DistributeTranspiler的transpile函数所需要需要在调用函数前进行定义样例如下
```python
t = fluid.DistributeTranspiler()
t.transpile(
optimize_ops,
params_grads,
trainer_id,
pservers=pserver,
trainers=trainers)
if training_role == "PSERVER":
pserver_prog = t.get_pserver_program(server_endpoint)
pserver_startup = t.get_startup_program(server_endpoint, pserver_prog)
```
### Demo
完整的demo代码位于Fluid的test目录下的[book](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/book/test_fit_a_line.py)中。
第一步进入demo代码所在目录
```bash
cd /paddle/python/paddle/fluid/tests/book
```
第二步启动Parameter Server
```bash
PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.2 TRAINERS=2 POD_IP=192.168.1.2 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=PSERVER python test_fit_a_line.py
```
执行命令后请等待出现提示: ```Server listening on 192.168.1.2:6174 ```, 表示Paramter Server已经正常启动。
第三步启动Trainer
```bash
PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.3 TRAINERS=2 POD_IP=192.168.1.3 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=TRAINER python test_fit_a_line.py
```
由于我们定义的Trainer的数量是2个因此需要在另外一个计算节点上再启动一个Trainer。
现在我们就启动了一个包含一个Parameter Server和两个Trainer的分布式训练任务。

@ -0,0 +1,2 @@
进阶使用
------------

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save