parent
4400284685
commit
79c2d90a7f
@ -0,0 +1,115 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/margin_rank_loss_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class MarginRankLossOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
MarginRankLossOp(const std::string &type,
|
||||||
|
const framework::VariableNameMap &inputs,
|
||||||
|
const framework::VariableNameMap &outputs,
|
||||||
|
const framework::AttributeMap &attrs)
|
||||||
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
// input check
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
|
||||||
|
"Input(Label) shouldn't be null");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X1"), "Input(X1) shouldn't be null");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X2"), "Input(X2) shouldn't be null");
|
||||||
|
auto label_dims = ctx.Input<framework::Tensor>("Label")->dims();
|
||||||
|
auto x1_dims = ctx.Input<framework::Tensor>("X1")->dims();
|
||||||
|
auto x2_dims = ctx.Input<framework::Tensor>("X2")->dims();
|
||||||
|
PADDLE_ENFORCE((label_dims.size() == 1) && (x1_dims.size() == 1) &&
|
||||||
|
(x2_dims.size() == 1),
|
||||||
|
"The rank of all inputs must be 1.");
|
||||||
|
PADDLE_ENFORCE((label_dims == x1_dims) && (x1_dims == x2_dims),
|
||||||
|
"All inputs must have the same size");
|
||||||
|
ctx.Output<framework::LoDTensor>("Out")->Resize(label_dims);
|
||||||
|
ctx.Output<framework::LoDTensor>("Activated")->Resize(label_dims);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename AttrType>
|
||||||
|
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
MarginRankLossOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("Label", "The label indicating X1 ranked higher than X2 or not.");
|
||||||
|
AddInput("X1", "The first input of MarginRankLossOp.");
|
||||||
|
AddInput("X2", "The second input of MarginRankLossOp");
|
||||||
|
AddAttr<AttrType>("margin", "Margin for MarginRankLossOp").SetDefault(0);
|
||||||
|
AddOutput("Out", "The output loss of MarginRankLoss operator");
|
||||||
|
AddOutput("Activated",
|
||||||
|
"Intermediate tensor to indicate "
|
||||||
|
"whether Output(Out) is activated")
|
||||||
|
.AsIntermediate();
|
||||||
|
AddComment(R"DOC(MarginRankLoss operator
|
||||||
|
|
||||||
|
loss(x1, x2, y) = max(0, -label * (x1-x2) + margin)
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class MarginRankLossGradOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
MarginRankLossGradOp(const std::string &type,
|
||||||
|
const framework::VariableNameMap &inputs,
|
||||||
|
const framework::VariableNameMap &outputs,
|
||||||
|
const framework::AttributeMap &attrs)
|
||||||
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
|
||||||
|
"Input(Label) shouldn't be null.");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X1"), "Input(X1) shouldn't be null.");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X2"), "Input(X2) shouldn't be null.");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||||
|
"Input(Out@GRAD) shouldn't be null.");
|
||||||
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Activated"),
|
||||||
|
"Intermediate(Activated) shouldn't be null.");
|
||||||
|
auto dims = ctx.Input<framework::Tensor>("X1")->dims();
|
||||||
|
auto *x1_grad =
|
||||||
|
ctx.Output<framework::LoDTensor>(framework::GradVarName("X1"));
|
||||||
|
auto *x2_grad =
|
||||||
|
ctx.Output<framework::LoDTensor>(framework::GradVarName("X2"));
|
||||||
|
if (x1_grad) {
|
||||||
|
x1_grad->Resize(dims);
|
||||||
|
}
|
||||||
|
if (x2_grad) {
|
||||||
|
x2_grad->Resize(dims);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp,
|
||||||
|
ops::MarginRankLossOpMaker<float>, margin_rank_loss_grad,
|
||||||
|
ops::MarginRankLossGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
margin_rank_loss,
|
||||||
|
ops::MarginRankLossKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
margin_rank_loss_grad,
|
||||||
|
ops::MarginRankLossGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,22 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/margin_rank_loss_op.h"
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
margin_rank_loss,
|
||||||
|
paddle::operators::MarginRankLossKernel<paddle::platform::GPUPlace, float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(margin_rank_loss_grad,
|
||||||
|
paddle::operators::MarginRankLossGradKernel<
|
||||||
|
paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,106 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ReLU {
|
||||||
|
HOSTDEVICE T operator()(const T& val) const {
|
||||||
|
if (val < 0) {
|
||||||
|
return static_cast<T>(0);
|
||||||
|
} else {
|
||||||
|
return val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct Heaviside {
|
||||||
|
HOSTDEVICE T operator()(const T& val) const {
|
||||||
|
if (val > 0) {
|
||||||
|
return static_cast<T>(1);
|
||||||
|
} else {
|
||||||
|
return static_cast<T>(0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T, typename AttrType = T>
|
||||||
|
class MarginRankLossKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const {
|
||||||
|
auto* out_t = ctx.Output<framework::LoDTensor>("Out");
|
||||||
|
auto* act_t = ctx.Output<framework::LoDTensor>("Activated");
|
||||||
|
|
||||||
|
auto* label_t = ctx.Input<framework::Tensor>("Label");
|
||||||
|
auto* x1_t = ctx.Input<framework::Tensor>("X1");
|
||||||
|
auto* x2_t = ctx.Input<framework::Tensor>("X2");
|
||||||
|
|
||||||
|
out_t->mutable_data<T>(ctx.GetPlace());
|
||||||
|
act_t->mutable_data<T>(ctx.GetPlace());
|
||||||
|
|
||||||
|
auto margin = static_cast<T>(ctx.Attr<AttrType>("margin"));
|
||||||
|
auto out = framework::EigenVector<T>::Flatten(*out_t);
|
||||||
|
auto act = framework::EigenVector<T>::Flatten(*act_t);
|
||||||
|
|
||||||
|
auto label = framework::EigenVector<T>::Flatten(*label_t);
|
||||||
|
auto x1 = framework::EigenVector<T>::Flatten(*x1_t);
|
||||||
|
auto x2 = framework::EigenVector<T>::Flatten(*x2_t);
|
||||||
|
|
||||||
|
auto& dev = ctx.GetEigenDevice<Place>();
|
||||||
|
act.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(Heaviside<T>());
|
||||||
|
out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU<T>());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class MarginRankLossGradKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const {
|
||||||
|
auto* d_x1_t =
|
||||||
|
ctx.Output<framework::LoDTensor>(framework::GradVarName("X1"));
|
||||||
|
auto* d_x2_t =
|
||||||
|
ctx.Output<framework::LoDTensor>(framework::GradVarName("X2"));
|
||||||
|
auto* act_t = ctx.Output<framework::LoDTensor>("Activated");
|
||||||
|
|
||||||
|
auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto* label_t = ctx.Input<framework::Tensor>("Label");
|
||||||
|
|
||||||
|
auto& dev = ctx.GetEigenDevice<Place>();
|
||||||
|
auto d_out = framework::EigenVector<T>::Flatten(*d_out_t);
|
||||||
|
auto act = framework::EigenVector<T>::Flatten(*act_t);
|
||||||
|
auto label = framework::EigenVector<T>::Flatten(*label_t);
|
||||||
|
|
||||||
|
// compute d_x1
|
||||||
|
if (d_x1_t) {
|
||||||
|
d_x1_t->mutable_data<T>(ctx.GetPlace());
|
||||||
|
auto d_x1 = framework::EigenVector<T>::Flatten(*d_x1_t);
|
||||||
|
d_x1.device(dev) = -d_out * act * label;
|
||||||
|
}
|
||||||
|
// compute d_x2
|
||||||
|
if (d_x2_t) {
|
||||||
|
d_x2_t->mutable_data<T>(ctx.GetPlace());
|
||||||
|
auto d_x2 = framework::EigenVector<T>::Flatten(*d_x2_t);
|
||||||
|
d_x2.device(dev) = d_out * act * label;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,40 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestMarginRankLossOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "margin_rank_loss"
|
||||||
|
batch_size = 5
|
||||||
|
margin = 0.1
|
||||||
|
# labels_{i} = {0, 1.0} or {0, 0.5, 1.0}
|
||||||
|
label = np.random.randint(0, 2, size=(batch_size, )).astype("float32")
|
||||||
|
x1 = np.random.random((batch_size, )).astype("float32")
|
||||||
|
x2 = np.random.random((batch_size, )).astype("float32")
|
||||||
|
# loss = max(0, -label * (x1 - x2) + margin)
|
||||||
|
loss = [
|
||||||
|
max(0, -label[i] * (x1[i] - x2[i]) + margin)
|
||||||
|
for i in range(batch_size)
|
||||||
|
]
|
||||||
|
self.attrs = {'margin': margin}
|
||||||
|
self.inputs = {'Label': label, 'X1': x1, 'X2': x2}
|
||||||
|
self.outputs = {'Out': loss}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
"""
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(["X1", "X2"], "Out")
|
||||||
|
|
||||||
|
def test_check_grad_ignore_x1(self):
|
||||||
|
self.check_grad(["X2"], "Out", no_grad_set=set('X1'))
|
||||||
|
|
||||||
|
def test_check_grad_ignore_x2(self):
|
||||||
|
self.check_grad(["X1"], "Out", no_grad_set=set('X2'))
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue