Merge branch 'develop' into optimize/op/fusion_gru

fix-deadlinks-in-readme
tensor-tang 7 years ago
commit 7bdd11d88e

@ -1,8 +0,0 @@
*.pyc
train.log
output
data/cifar-10-batches-py/
data/cifar-10-python.tar.gz
data/*.txt
data/*.list
data/mean.meta

@ -1,7 +1,7 @@
# 图像分类
本教程源代码目录在[book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification) 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.cn.md#运行这本书)。
本教程源代码目录在[book/image_classification](https://github.com/PaddlePaddle/book/tree/develop/03.image_classification) 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.cn.md#运行这本书),更多内容请参考本教程的[视频课堂](http://bit.baidu.com/course/detail/id/168.html)
## 背景介绍
@ -20,24 +20,25 @@
图像分类包括通用图像分类、细粒度图像分类等。图1展示了通用图像分类效果即模型可以正确识别图像上的主要物体。
![dogCatClassification](./image/dog_cat.png)
<p align="center">
<img src="image/dog_cat.png " width="350" ><br/>
图1. 通用图像分类展示
</p>
图2展示了细粒度图像分类-花卉识别的效果,要求模型可以正确识别花的类别。
![flowersClassification](./image/flowers.png)
<p align="center">
<img src="image/flowers.png" width="400" ><br/>
图2. 细粒度图像分类展示
</p>
一个好的模型既要对不同类别识别正确,同时也应该能够对不同视角、光照、背景、变形或部分遮挡的图像正确识别(这里我们统一称作图像扰动)。图3展示了一些图像的扰动较好的模型会像聪明的人类一样能够正确识别。
![imageVariations](https://raw.githubusercontent.com/PaddlePaddle/book/develop/03.image_classification/image/variations.png)
<p align="center">
<img src="image/variations.png" width="550" ><br/>
图3. 扰动图片展示[22]
</p>
@ -46,17 +47,21 @@
图像识别领域大量的研究成果都是建立在[PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/)、[ImageNet](http://image-net.org/)等公开的数据集上很多图像识别算法通常在这些数据集上进行测试和比较。PASCAL VOC是2005年发起的一个视觉挑战赛ImageNet是2010年发起的大规模视觉识别竞赛(ILSVRC)的数据集,在本章中我们基于这些竞赛的一些论文介绍图像分类模型。
在2012年之前的传统图像分类方法可以用背景描述中提到的三步完成但通常完整建立图像识别模型一般包括底层特征学习、特征编码、空间约束、分类器设计、模型融合等几个阶段。
1). **底层特征提取**: 通常从图像中按照固定步长、尺度提取大量局部特征描述。常用的局部特征包括SIFT(Scale-Invariant Feature Transform, 尺度不变特征转换) \[[1](#参考文献)\]、HOG(Histogram of Oriented Gradient, 方向梯度直方图) \[[2](#参考文献)\]、LBP(Local Bianray Pattern, 局部二值模式) \[[3](#参考文献)\] 等,一般也采用多种特征描述子,防止丢失过多的有用信息。
2). **特征编码**: 底层特征中包含了大量冗余与噪声,为了提高特征表达的鲁棒性,需要使用一种特征变换算法对底层特征进行编码,称作特征编码。常用的特征编码包括向量量化编码 \[[4](#参考文献)\]、稀疏编码 \[[5](#参考文献)\]、局部线性约束编码 \[[6](#参考文献)\]、Fisher向量编码 \[[7](#参考文献)\] 等。
3). **空间特征约束**: 特征编码之后一般会经过空间特征约束,也称作**特征汇聚**。特征汇聚是指在一个空间范围内,对每一维特征取最大值或者平均值,可以获得一定特征不变形的特征表达。金字塔特征匹配是一种常用的特征聚会方法,这种方法提出将图像均匀分块,在分块内做特征汇聚。
4). **通过分类器分类**: 经过前面步骤之后一张图像可以用一个固定维度的向量进行描述接下来就是经过分类器对图像进行分类。通常使用的分类器包括SVM(Support Vector Machine, 支持向量机)、随机森林等。而使用核方法的SVM是最为广泛的分类器在传统图像分类任务上性能很好。
这种方法在PASCAL VOC竞赛中的图像分类算法中被广泛使用 \[[18](#参考文献)\]。[NEC实验室](http://www.nec-labs.com/)在ILSVRC2010中采用SIFT和LBP特征两个非线性编码器以及SVM分类器获得图像分类的冠军 \[[8](#参考文献)\]。
Alex Krizhevsky在2012年ILSVRC提出的CNN模型 \[[9](#参考文献)\] 取得了历史性的突破效果大幅度超越传统方法获得了ILSVRC2012冠军该模型被称作AlexNet。这也是首次将深度学习用于大规模图像分类中。从AlexNet之后涌现了一系列CNN模型不断地在ImageNet上刷新成绩如图4展示。随着模型变得越来越深以及精妙的结构设计Top-5的错误率也越来越低降到了3.5%附近。而在同样的ImageNet数据集上人眼的辨识错误率大概在5.1%,也就是目前的深度学习模型的识别能力已经超过了人眼。
![ilsvrc](./image/ilsvrc.png)
<p align="center">
<img src="image/ilsvrc.png" width="500" ><br/>
图4. ILSVRC图像分类Top-5错误率
</p>
@ -64,8 +69,8 @@ Alex Krizhevsky在2012年ILSVRC提出的CNN模型 \[[9](#参考文献)\] 取得
传统CNN包含卷积层、全连接层等组件并采用softmax多类别分类器和多类交叉熵损失函数一个典型的卷积神经网络如图5所示我们先介绍用来构造CNN的常见组件。
![cnnStructure](./image/lenet.png)
<p align="center">
<img src="image/lenet.png"><br/>
图5. CNN网络示例[20]
</p>
@ -83,8 +88,8 @@ Alex Krizhevsky在2012年ILSVRC提出的CNN模型 \[[9](#参考文献)\] 取得
牛津大学VGG(Visual Geometry Group)组在2014年ILSVRC提出的模型被称作VGG模型 \[[11](#参考文献)\] 。该模型相比以往模型进一步加宽和加深了网络结构它的核心是五组卷积操作每两组之间做Max-Pooling空间降维。同一组内采用多次连续的3X3卷积卷积核的数目由较浅组的64增多到最深组的512同一组内的卷积核数目是一样的。卷积之后接两层全连接层之后是分类层。由于每组内卷积层的不同有11、13、16、19层这几种模型下图展示一个16层的网络结构。VGG模型结构相对简洁提出之后也有很多文章基于此模型进行研究如在ImageNet上首次公开超过人眼识别的模型\[[19](#参考文献)\]就是借鉴VGG模型的结构。
![vgg16](./image/vgg16.png)
<p align="center">
<img src="image/vgg16.png" width="750" ><br/>
图6. 基于ImageNet的VGG16模型
</p>
@ -92,12 +97,16 @@ Alex Krizhevsky在2012年ILSVRC提出的CNN模型 \[[9](#参考文献)\] 取得
GoogleNet \[[12](#参考文献)\] 在2014年ILSVRC的获得了冠军在介绍该模型之前我们先来了解NIN(Network in Network)模型 \[[13](#参考文献)\] 和Inception模块因为GoogleNet模型由多组Inception模块组成模型设计借鉴了NIN的一些思想。
NIN模型主要有两个特点1) 引入了多层感知卷积网络(Multi-Layer Perceptron Convolution, MLPconv)代替一层线性卷积网络。MLPconv是一个微小的多层卷积网络即在线性卷积后面增加若干层1x1的卷积这样可以提取出高度非线性特征。2) 传统的CNN最后几层一般都是全连接层参数较多。而NIN模型设计最后一层卷积层包含类别维度大小的特征图然后采用全局均值池化(Avg-Pooling)替代全连接层,得到类别维度大小的向量,再进行分类。这种替代全连接层的方式有利于减少参数。
NIN模型主要有两个特点
1) 引入了多层感知卷积网络(Multi-Layer Perceptron Convolution, MLPconv)代替一层线性卷积网络。MLPconv是一个微小的多层卷积网络即在线性卷积后面增加若干层1x1的卷积这样可以提取出高度非线性特征。
2) 传统的CNN最后几层一般都是全连接层参数较多。而NIN模型设计最后一层卷积层包含类别维度大小的特征图然后采用全局均值池化(Avg-Pooling)替代全连接层,得到类别维度大小的向量,再进行分类。这种替代全连接层的方式有利于减少参数。
Inception模块如下图7所示图(a)是最简单的设计输出是3个卷积层和一个池化层的特征拼接。这种设计的缺点是池化层不会改变特征通道数拼接后会导致特征的通道数较大经过几层这样的模块堆积后通道数会越来越大导致参数和计算量也随之增大。为了改善这个缺点图(b)引入3个1x1卷积层进行降维所谓的降维就是减少通道数同时如NIN模型中提到的1x1卷积也可以修正线性特征。
![inception](./image/inception.png)
<p align="center">
<img src="image/inception.png" width="800" ><br/>
图7. Inception模块
</p>
@ -105,8 +114,8 @@ GoogleNet由多组Inception模块堆积而成。另外在网络最后也没
GoogleNet整体网络结构如图8所示总共22层网络开始由3层普通的卷积组成接下来由三组子网络组成第一组子网络包含2个Inception模块第二组包含5个Inception模块第三组包含2个Inception模块然后接均值池化层、全连接层。
![googleNet](./image/googlenet.jpeg)
<p align="center">
<img src="image/googlenet.jpeg" ><br/>
图8. GoogleNet[12]
</p>
@ -120,15 +129,15 @@ ResNet(Residual Network) \[[15](#参考文献)\] 是2015年ImageNet图像分类
残差模块如图9所示左边是基本模块连接方式由两个输出通道数相同的3x3卷积组成。右边是瓶颈模块(Bottleneck)连接方式之所以称为瓶颈是因为上面的1x1卷积用来降维(图示例即256->64)下面的1x1卷积用来升维(图示例即64->256)这样中间3x3卷积的输入和输出通道数都较小(图示例即64->64)。
![ResNetBlock](./image/resnet_block.jpg)
<p align="center">
<img src="image/resnet_block.jpg" width="400"><br/>
图9. 残差模块
</p>
图10展示了50、101、152层网络连接示意图使用的是瓶颈模块。这三个模型的区别在于每组中残差模块的重复次数不同(见图右上角)。ResNet训练收敛较快成功的训练了上百乃至近千层的卷积神经网络。
![ResNet](./image/resnet.png)
<p align="center">
<img src="image/resnet.png"><br/>
图10. 基于ImageNet的ResNet模型
</p>
@ -139,8 +148,8 @@ ResNet(Residual Network) \[[15](#参考文献)\] 是2015年ImageNet图像分类
由于ImageNet数据集较大下载和训练较慢为了方便大家学习我们使用[CIFAR10](<https://www.cs.toronto.edu/~kriz/cifar.html>)数据集。CIFAR10数据集包含60,000张32x32的彩色图片10个类别每个类包含6,000张。其中50,000张图片作为训练集10000张作为测试集。图11从每个类别中随机抽取了10张图片展示了所有的类别。
![CIFAR](https://raw.githubusercontent.com/PaddlePaddle/book/develop/03.image_classification/image/cifar.png)
<p align="center">
<img src="image/cifar.png" width="350"><br/>
图11. CIFAR10数据集[21]
</p>
@ -159,6 +168,7 @@ import paddle
import paddle.fluid as fluid
import numpy
import sys
from __future__ import print_function
```
本教程中我们提供了VGG和ResNet两个模型的配置。
@ -197,6 +207,7 @@ predict = fluid.layers.fc(input=fc2, size=10, act='softmax')
return predict
```
1. 首先定义了一组卷积网络即conv_block。卷积核大小为3x3池化窗口大小为2x2窗口滑动大小为2groups决定每组VGG模块是几次连续的卷积操作dropouts指定Dropout操作的概率。所使用的`img_conv_group`是在`paddle.networks`中预定义的模块,由若干组 Conv->BN->ReLu->Dropout 和 一组 Pooling 组成。
2. 五组卷积操作,即 5个conv_block。 第一、二组采用两次连续的卷积操作。第三、四、五组采用三次连续的卷积操作。每组最后一个卷积后面Dropout概率为0即不使用Dropout操作。
@ -260,10 +271,12 @@ return tmp
`resnet_cifar10` 的连接结构主要有以下几个过程。
1. 底层输入连接一层 `conv_bn_layer`即带BN的卷积层。
2. 然后连接3组残差模块即下面配置3组 `layer_warp` ,每组采用图 10 左边残差模块组成。
3. 最后对网络做均值池化并返回该层。
注意:除过第一层卷积层和最后一层全连接层之外,要求三组 `layer_warp` 总的含参层数能够被6整除`resnet_cifar10` 的 depth 要满足 `$(depth - 2) % 6 == 0$`
注意:除过第一层卷积层和最后一层全连接层之外,要求三组 `layer_warp` 总的含参层数能够被6整除`resnet_cifar10` 的 depth 要满足 $(depth - 2) % 6 == 0$ 。
```python
def resnet_cifar10(ipt, depth=32):
@ -363,7 +376,11 @@ paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
`event_handler_plot`可以用来利用回调数据来打点画图:
![png](./image/train_and_test.png)
<p align="center">
<img src="image/train_and_test.png" width="350"><br/>
图12. 训练结果
</p>
```python
params_dirname = "image_classification_resnet.inference.model"
@ -425,7 +442,7 @@ trainer.save_params(params_dirname)
通过`trainer.train`函数训练:
**注意:** CPU每个 Epoch 将花费大约1520分钟。这部分可能需要一段时间。请随意修改代码在GPU上运行测试以提高训速度。
**注意:** CPU每个 Epoch 将花费大约1520分钟。这部分可能需要一段时间。请随意修改代码在GPU上运行测试以提高训速度。
```python
trainer.train(
@ -449,11 +466,11 @@ Pass 300, Batch 0, Cost 1.223424, Acc 0.593750
Test with Pass 0, Loss 1.1, Acc 0.6
```
图12是训练的分类错误率曲线图运行到第200个pass后基本收敛最终得到测试集上分类错误率为8.54%。
图13是训练的分类错误率曲线图运行到第200个pass后基本收敛最终得到测试集上分类错误率为8.54%。
![CIFARErrorRate](./image/plot.png)
<p align="center">
图12. CIFAR10数据集上VGG模型的分类错误率
<img src="image/plot.png" width="400" ><br/>
图13. CIFAR10数据集上VGG模型的分类错误率
</p>
## 应用模型
@ -498,10 +515,10 @@ img = load_image(cur_dir + '/image/dog.png')
```python
inferencer = fluid.Inferencer(
infer_func=inference_program, param_path=params_dirname, place=place)
label_list = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
# inference
results = inferencer.infer({'pixel': img})
print("infer results: ", results)
print("infer results: %s" % label_list[np.argmax(results[0])])
```
## 总结

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 226 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 136 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 MiB

@ -10,9 +10,9 @@
.. toctree::
:maxdepth: 2
image_classification/index.md
word2vec/index.md
recommender_system/index.md
understand_sentiment/index.md
label_semantic_roles/index.md
machine_translation/index.md
image_classification/README.cn.md
word2vec/README.cn.md
recommender_system/README.cn.md
understand_sentiment/README.cn.md
label_semantic_roles/README.cn.md
machine_translation/README.cn.md

@ -1,12 +0,0 @@
data/train.list
data/test.*
data/conll05st-release.tar.gz
data/conll05st-release
data/predicate_dict
data/label_dict
data/word_dict
data/emb
data/feature
output
predict.res
train.log

Before

Width:  |  Height:  |  Size: 223 KiB

After

Width:  |  Height:  |  Size: 223 KiB

Before

Width:  |  Height:  |  Size: 32 KiB

After

Width:  |  Height:  |  Size: 32 KiB

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 31 KiB

Before

Width:  |  Height:  |  Size: 105 KiB

After

Width:  |  Height:  |  Size: 105 KiB

Before

Width:  |  Height:  |  Size: 58 KiB

After

Width:  |  Height:  |  Size: 58 KiB

Before

Width:  |  Height:  |  Size: 51 KiB

After

Width:  |  Height:  |  Size: 51 KiB

Before

Width:  |  Height:  |  Size: 238 KiB

After

Width:  |  Height:  |  Size: 238 KiB

@ -1,9 +0,0 @@
data/wmt14
data/pre-wmt14
pretrained/wmt14_model
gen.log
gen_result
train.log
dataprovider_copy_1.py
*.pyc
multi-bleu.perl

@ -30,7 +30,9 @@
1 -6.23177 These are the light of hope and relief . <e>
2 -7.7914 These are the light of hope and the relief of hope . <e>
```
- 左起第一列是生成句子的序号;左起第二列是该条句子的得分(从大到小),分值越高越好;左起第三列是生成的英语句子。
- 另外有两个特殊标志:`<e>`表示句子的结尾,`<unk>`表示未登录词unknown word即未在训练字典中出现的词。
## 模型概览
@ -78,18 +80,15 @@
机器翻译任务的训练过程中,解码阶段的目标是最大化下一个正确的目标语言词的概率。思路是:
1. 每一个时刻根据源语言句子的编码信息又叫上下文向量context vector`$c$`、真实目标语言序列的第`$i$`个词`$u_i$`和`$i$`时刻RNN的隐层状态`$z_i$`,计算出下一个隐层状态`$z_{i+1}$`。计算公式如下:
$$z_{i+1}=\phi_{\theta '} \left ( c,u_i,z_i \right )$$
其中`$\phi _{\theta '}$`是一个非线性激活函数;`$c=q\mathbf{h}$`是源语言句子的上下文向量,在不使用[注意力机制](#注意力机制)时,如果[编码器](#编码器)的输出是源语言句子编码后的最后一个元素,则可以定义`$c=h_T$``$u_i$`是目标语言序列的第`$i$`个单词,`$u_0$`是目标语言序列的开始标记`<s>`,表示解码开始;`$z_i$`是`$i$`时刻解码RNN的隐层状态`$z_0$`是一个全零的向量。
2. 将`$z_{i+1}$`通过`softmax`归一化,得到目标语言序列的第`$i+1$`个单词的概率分布`$p_{i+1}$`。概率分布公式如下:
$$p\left ( u_{i+1}|u_{&lt;i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$
其中`$W_sz_{i+1}+b_z$`是对每个可能的输出单词进行打分再用softmax归一化就可以得到第`$i+1$`个词的概率`$p_{i+1}$`。
3. 根据`$p_{i+1}$`和`$u_{i+1}$`计算代价。
4. 重复步骤1~3直到目标语言序列中的所有词处理完毕。
机器翻译任务的生成过程,通俗来讲就是根据预先训练的模型来翻译源语言句子。生成过程中的解码阶段和上述训练过程的有所差异,具体介绍请见[柱搜索算法](#柱搜索算法)。
@ -103,8 +102,11 @@ $$p\left ( u_{i+1}|u_{&lt;i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$
使用柱搜索算法的解码阶段,目标是最大化生成序列的概率。思路是:
1. 每一个时刻,根据源语言句子的编码信息`$c$`、生成的第`$i$`个目标语言序列单词`$u_i$`和`$i$`时刻RNN的隐层状态`$z_i$`,计算出下一个隐层状态`$z_{i+1}$`。
2. 将`$z_{i+1}$`通过`softmax`归一化,得到目标语言序列的第`$i+1$`个单词的概率分布`$p_{i+1}$`。
3. 根据`$p_{i+1}$`采样出单词`$u_{i+1}$`。
4. 重复步骤1~3直到获得句子结束标记`<e>`或超过句子的最大生成长度为止。
注意:`$z_{i+1}$`和`$p_{i+1}$`的计算公式同[解码器](#解码器)中的一样。且由于生成时的每一步都是通过贪心法实现的,因此并不能保证得到全局最优解。
@ -116,9 +118,13 @@ $$p\left ( u_{i+1}|u_{&lt;i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$
### 数据预处理
我们的预处理流程包括两步:
- 将每个源语言到目标语言的平行语料库文件合并为一个文件:
- 合并每个`XXX.src`和`XXX.trg`文件为`XXX`。
- `XXX`中的第`$i$`行内容为`XXX.src`中的第`$i$`行和`XXX.trg`中的第`$i$`行连接,用'\t'分隔。
- 创建训练数据的“源字典”和“目标字典”。每个字典都有**DICTSIZE**个单词包括语料中词频最高的DICTSIZE - 3个单词和3个特殊符号`<s>`(序列的开始)、`<e>`(序列的结束)和`<unk>`(未登录词)。
### 示例数据
@ -132,6 +138,7 @@ $$p\left ( u_{i+1}|u_{&lt;i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$
下面我们开始根据输入数据的形式配置模型。首先引入所需的库函数以及定义全局变量。
```python
from __future__ import print_function
import contextlib
import numpy as np
@ -253,9 +260,18 @@ current_state_with_lod = pd.lod_reset(x=current_state, y=pre_score)
current_score = pd.fc(input=current_state_with_lod,
size=target_dict_dim,
act='softmax')
topk_scores, topk_indices = pd.topk(current_score, k=topk_size)
topk_scores, topk_indices = pd.topk(current_score, k=beam_size)
# calculate accumulated scores after topk to reduce computation cost
accu_scores = pd.elementwise_add(
x=pd.log(topk_scores), y=pd.reshape(pre_score, shape=[-1]), axis=0)
selected_ids, selected_scores = pd.beam_search(
pre_ids, topk_indices, topk_scores, beam_size, end_id=10, level=0)
pre_ids,
pre_score,
topk_indices,
accu_scores,
beam_size,
end_id=10,
level=0)
pd.increment(x=counter, value=1, in_place=True)
@ -264,10 +280,14 @@ pd.array_write(current_state, array=state_array, i=counter)
pd.array_write(selected_ids, array=ids_array, i=counter)
pd.array_write(selected_scores, array=scores_array, i=counter)
pd.less_than(x=counter, y=array_len, cond=cond)
# update the break condition: up to the max length or all candidates of
# source sentences have ended.
length_cond = pd.less_than(x=counter, y=array_len)
finish_cond = pd.logical_not(pd.is_empty(x=selected_ids))
pd.logical_and(x=length_cond, y=finish_cond, out=cond)
translation_ids, translation_scores = pd.beam_search_decode(
ids=ids_array, scores=scores_array)
ids=ids_array, scores=scores_array, beam_size=beam_size, end_id=10)
return translation_ids, translation_scores
```
@ -424,10 +444,13 @@ result_ids = np.array(results[0])
result_scores = np.array(results[1])
print("Original sentence:")
print(" ".join([src_dict[w] for w in feed_data[0][0]]))
print("Translated sentence:")
print(" ".join([trg_dict[w] for w in result_ids]))
print("Corresponding score: ", result_scores)
print(" ".join([src_dict[w] for w in feed_data[0][0][1:-1]]))
print("Translated score and sentence:")
for i in xrange(beam_size):
start_pos = result_ids_lod[1][i] + 1
end_pos = result_ids_lod[1][i+1]
print("%d\t%.4f\t%s\n" % (i+1, result_scores[end_pos-1],
" ".join([trg_dict[w] for w in result_ids[start_pos:end_pos]])))
break
```

Before

Width:  |  Height:  |  Size: 176 KiB

After

Width:  |  Height:  |  Size: 176 KiB

Before

Width:  |  Height:  |  Size: 86 KiB

After

Width:  |  Height:  |  Size: 86 KiB

Before

Width:  |  Height:  |  Size: 50 KiB

After

Width:  |  Height:  |  Size: 50 KiB

Before

Width:  |  Height:  |  Size: 125 KiB

After

Width:  |  Height:  |  Size: 125 KiB

Before

Width:  |  Height:  |  Size: 131 KiB

After

Width:  |  Height:  |  Size: 131 KiB

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save