commit
7c426be98c
@ -0,0 +1,128 @@
|
|||||||
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/merge_ids_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class MergeIdsOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
void Make() override {
|
||||||
|
AddInput("Ids", "(LoDTensor) the input ids with shape{batch_num, 1}");
|
||||||
|
AddInput(
|
||||||
|
"X",
|
||||||
|
"(LoDTensors) multi input tensor with shape{batch_num, N}, N is the "
|
||||||
|
"size of embedding table")
|
||||||
|
.AsDuplicable();
|
||||||
|
AddOutput("Out", "(LoDTensor) The merged outputs of the input tensors.");
|
||||||
|
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Merge multi LoDTensor's into one according to Ids's shard num.
|
||||||
|
|
||||||
|
|
||||||
|
split_ids_op -> prefetch_op -> merge_ids_op
|
||||||
|
|
||||||
|
|
||||||
|
merge_ids_op should be used after split_ids_op and prefetch_op, split_ids_op
|
||||||
|
will split input Ids into multiple tensors according to Id's shard number.
|
||||||
|
prefetch_op will send them to parameter server to prefetch embedding value
|
||||||
|
back. During split, the order of ids is disordered. In merge_ids_op we use
|
||||||
|
the original Ids to restore the order of the fetched embedding value and
|
||||||
|
also pass the lod information to the merged output.
|
||||||
|
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
Ids = [1,2,3,4,5,6] # 3 shared
|
||||||
|
|
||||||
|
split_ids_op ->
|
||||||
|
|
||||||
|
Id0 = [3, 6] # id % 3 == 0
|
||||||
|
Id1 = [1, 4] # id % 3 == 1
|
||||||
|
Id2 = [2, 5] # id % 3 == 2
|
||||||
|
|
||||||
|
prefetch_op ->
|
||||||
|
|
||||||
|
X0 = [[0.3 0.3] # 3
|
||||||
|
[0.6 0.6]] # 6
|
||||||
|
X1 = [[0.1 0.1] # 1
|
||||||
|
[0.4 0.4]] # 4
|
||||||
|
X2 = [[0.2 0.2] # 2
|
||||||
|
[0.5 0.5]] # 5
|
||||||
|
|
||||||
|
merge_ids_op ->
|
||||||
|
|
||||||
|
Out = [[0.1 0.1] # 1
|
||||||
|
[0.2 0.2] # 2
|
||||||
|
[0.3 0.3] # 3
|
||||||
|
[0.4 0.4] # 4
|
||||||
|
[0.5 0.5] # 5
|
||||||
|
[0.6 0.6]] # 6
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class MergeIdsOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Ids"), "MergeIdsOp must has input Ids.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInputs("X"), "MergeIdsOp must has input X.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"), "MergeIdsOp must has output Out.");
|
||||||
|
|
||||||
|
auto ids_var_type = ctx->GetInputsVarType("Ids").front();
|
||||||
|
auto ids_dims = ctx->GetInputDim("Ids");
|
||||||
|
if (ids_var_type == framework::proto::VarType::LOD_TENSOR) {
|
||||||
|
PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
|
||||||
|
PADDLE_ENFORCE_EQ(ids_dims[1], 1);
|
||||||
|
}
|
||||||
|
auto x_var_type = ctx->GetInputsVarType("X");
|
||||||
|
for (auto &var_type : x_var_type) {
|
||||||
|
PADDLE_ENFORCE_EQ(var_type, framework::proto::VarType::LOD_TENSOR,
|
||||||
|
"input X only support lod tensors");
|
||||||
|
}
|
||||||
|
ctx->ShareLoD("Ids", "Out");
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
framework::OpKernelType GetExpectedKernelType(
|
||||||
|
const framework::ExecutionContext &ctx) const override {
|
||||||
|
return framework::OpKernelType(
|
||||||
|
framework::ToDataType(
|
||||||
|
ctx.MultiInput<framework::Tensor>("X").front()->type()),
|
||||||
|
ctx.GetPlace());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class MergeIdsOpInferVarType : public framework::VarTypeInference {
|
||||||
|
public:
|
||||||
|
void operator()(const framework::OpDesc &op_desc,
|
||||||
|
framework::BlockDesc *block) const override {
|
||||||
|
auto *input_var = block->Var(op_desc.Input("Ids")[0]);
|
||||||
|
for (auto &out_var : op_desc.Output("Out")) {
|
||||||
|
block->Var(out_var)->SetType(input_var->GetType());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OPERATOR(merge_ids, ops::MergeIdsOp, ops::MergeIdsOpMaker,
|
||||||
|
ops::MergeIdsOpInferVarType);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
merge_ids, ops::MergeIdsOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,92 @@
|
|||||||
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
#include "paddle/fluid/framework/tensor_util.h"
|
||||||
|
#include "paddle/fluid/operators/math/selected_rows_functor.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class MergeIdsOpKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||||
|
auto place = ctx.GetPlace();
|
||||||
|
if (!platform::is_cpu_place(place)) {
|
||||||
|
PADDLE_THROW("MergeIds do not support GPU kernel");
|
||||||
|
}
|
||||||
|
VLOG(3) << "run in MergeIdsOpKernel";
|
||||||
|
|
||||||
|
const auto *ids_var = ctx.InputVar("Ids");
|
||||||
|
PADDLE_ENFORCE(ids_var->IsType<framework::LoDTensor>(),
|
||||||
|
"only support to merge Ids of LoDTensor");
|
||||||
|
|
||||||
|
const auto &ids_tensor = ids_var->Get<framework::LoDTensor>();
|
||||||
|
const auto &ids_dims = ids_tensor.dims();
|
||||||
|
const int64_t *ids = ids_tensor.data<int64_t>();
|
||||||
|
|
||||||
|
auto x_tensors = ctx.MultiInput<framework::LoDTensor>("X");
|
||||||
|
|
||||||
|
auto *out = ctx.Output<framework::LoDTensor>("Out");
|
||||||
|
|
||||||
|
int batch_size = 0;
|
||||||
|
int embedding_size = 0;
|
||||||
|
for (auto &input : x_tensors) {
|
||||||
|
if (framework::product(input->dims()) != 0) {
|
||||||
|
if (embedding_size == 0) {
|
||||||
|
embedding_size = input->dims()[1];
|
||||||
|
}
|
||||||
|
PADDLE_ENFORCE_EQ(embedding_size, input->dims()[1],
|
||||||
|
"embedding size of all input should be the same");
|
||||||
|
batch_size += input->dims()[0];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
batch_size, ids_dims[0],
|
||||||
|
"the batch size of ids and merged embedding value should be the same");
|
||||||
|
|
||||||
|
const size_t shard_num = x_tensors.size();
|
||||||
|
|
||||||
|
if (shard_num == 1) {
|
||||||
|
VLOG(3) << "only one shard, we can copy the data directly";
|
||||||
|
TensorCopy(*x_tensors[0], place, out);
|
||||||
|
} else {
|
||||||
|
std::vector<int> in_indexs(shard_num, 0);
|
||||||
|
auto *out_data = out->mutable_data<T>(
|
||||||
|
framework::make_ddim({batch_size, embedding_size}), place);
|
||||||
|
// copy data from ins[shard_num] to out.
|
||||||
|
for (int i = 0; i < ids_dims[0]; ++i) {
|
||||||
|
int64_t id = ids[i];
|
||||||
|
size_t shard_id = static_cast<size_t>(id) % shard_num;
|
||||||
|
int index = in_indexs[shard_id];
|
||||||
|
memcpy(out_data + embedding_size * i,
|
||||||
|
x_tensors[shard_id]->data<T>() + index * embedding_size,
|
||||||
|
sizeof(T) * embedding_size);
|
||||||
|
in_indexs[shard_id] += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (size_t i = 0; i < shard_num; ++i) {
|
||||||
|
PADDLE_ENFORCE_EQ(in_indexs[i], x_tensors[i]->dims()[0],
|
||||||
|
"after merge, all data in x_tensor should be used");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,38 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestMergeIdsOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "merge_ids"
|
||||||
|
ids = np.array([[0], [2], [2], [3], [5], [5], [6]]).astype('int64')
|
||||||
|
x0 = np.array([[0.1, 0.2], [0.2, 0.3], [0.3, 0.4]]).astype('float32')
|
||||||
|
x1 = np.array([]).astype('float32')
|
||||||
|
x2 = np.array([[0.4, 0.5], [0.4, 0.5], [0.5, 0.6],
|
||||||
|
[0.5, 0.6]]).astype('float32')
|
||||||
|
out = np.array([[0.1, 0.2], [0.4, 0.5], [0.4, 0.5], [0.2, 0.3],
|
||||||
|
[0.5, 0.6], [0.5, 0.6], [0.3, 0.4]]).astype('float32')
|
||||||
|
self.inputs = {'Ids': ids, "X": [('x0', x0), ('x1', x1), ('x2', x2)]}
|
||||||
|
self.outputs = {'Out': out}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue