parent
170ac721b6
commit
7c67146632
@ -0,0 +1,131 @@
|
|||||||
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/sequence_pad_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class SequencePadOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||||
|
"Input(X) of SequencePadOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||||
|
"Output(Out) of SequencePadOp should not be null.");
|
||||||
|
|
||||||
|
auto x_dims = ctx->GetInputDim("X");
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2,
|
||||||
|
"Only support 2-D tensor, rank of Input(X) should be 2.");
|
||||||
|
|
||||||
|
auto out_dims = x_dims;
|
||||||
|
|
||||||
|
if (ctx->IsRuntime()) {
|
||||||
|
framework::Variable* x_var =
|
||||||
|
boost::get<framework::Variable*>(ctx->GetInputVarPtrs("X")[0]);
|
||||||
|
|
||||||
|
auto& x_lod = x_var->Get<LoDTensor>().lod();
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_GE(x_lod.size(), 1,
|
||||||
|
"Input(X) should be sequences containing lod.");
|
||||||
|
|
||||||
|
auto last_level_lod = x_lod[x_lod.size() - 1];
|
||||||
|
size_t max_len = 0;
|
||||||
|
|
||||||
|
for (size_t i = 1; i < last_level_lod.size(); ++i) {
|
||||||
|
auto seq_len = last_level_lod[i] - last_level_lod[i - 1];
|
||||||
|
max_len = max_len < seq_len ? seq_len : max_len;
|
||||||
|
}
|
||||||
|
|
||||||
|
out_dims[0] = max_len * (last_level_lod.size() - 1);
|
||||||
|
} else {
|
||||||
|
framework::VarDesc* x_desc =
|
||||||
|
boost::get<framework::VarDesc*>(ctx->GetInputVarPtrs("X")[0]);
|
||||||
|
PADDLE_ENFORCE_GE(x_desc->GetLoDLevel(), 1,
|
||||||
|
"Input(X) should be sequences containing lod.");
|
||||||
|
out_dims[0] = -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
ctx->SetOutputDim("Out", out_dims);
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
framework::OpKernelType GetExpectedKernelType(
|
||||||
|
const framework::ExecutionContext& ctx) const override {
|
||||||
|
return framework::OpKernelType(
|
||||||
|
framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
|
||||||
|
ctx.device_context());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SequencePadOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
SequencePadOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X",
|
||||||
|
"(LoDTensor, default LoDTensor<float>) Input variable which "
|
||||||
|
"should contain lod information. Length of each sequence would "
|
||||||
|
"be computed from the most bottom level lod.");
|
||||||
|
AddOutput("Out",
|
||||||
|
"(Tensor) Output variable which would be a common tensor "
|
||||||
|
"without lod. Each sequence would be padded to the maximum "
|
||||||
|
"length.");
|
||||||
|
AddAttr<float>("pad_value",
|
||||||
|
"(float, default 0.0) Value to be padded "
|
||||||
|
"to the end of each sequence.");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SequencePadGradOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||||
|
"Input(X) of SequencePadGradOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||||
|
"Input(Out@GRAD) of SequencePadGradOp should not be null.");
|
||||||
|
|
||||||
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
||||||
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
||||||
|
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OPERATOR(sequence_pad, ops::SequencePadOp, ops::SequencePadOpMaker,
|
||||||
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||||
|
REGISTER_OPERATOR(sequence_pad_grad, ops::SequencePadGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
sequence_pad,
|
||||||
|
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, float>,
|
||||||
|
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, double>,
|
||||||
|
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int>,
|
||||||
|
ops::SequencePadOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
sequence_pad_grad,
|
||||||
|
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, float>,
|
||||||
|
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, double>,
|
||||||
|
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int>,
|
||||||
|
ops::SequencePadGradOpKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
@ -0,0 +1,23 @@
|
|||||||
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/sequence_pad_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
sequence_pad,
|
||||||
|
ops::SequencePadOpKernel<paddle::platform::CUDADeviceContext, float>);
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
sequence_pad_grad,
|
||||||
|
ops::SequencePadGradOpKernel<paddle::platform::CUDADeviceContext, float>);
|
@ -0,0 +1,97 @@
|
|||||||
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
#include "paddle/fluid/memory/memcpy.h"
|
||||||
|
#include "paddle/fluid/operators/math/math_function.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using LoDTensor = framework::LoDTensor;
|
||||||
|
using LoD = framework::LoD;
|
||||||
|
|
||||||
|
// @TODO clean code
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class SequencePadOpKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto* x_ptr = ctx.Input<LoDTensor>("X");
|
||||||
|
auto* out_ptr = ctx.Output<LoDTensor>("Out");
|
||||||
|
|
||||||
|
out_ptr->mutable_data<T>(ctx.GetPlace());
|
||||||
|
|
||||||
|
T pad_value = static_cast<T>(ctx.Attr<float>("pad_value"));
|
||||||
|
|
||||||
|
math::SetConstant<DeviceContext, T> set_func;
|
||||||
|
set_func(ctx.template device_context<DeviceContext>(), out_ptr, pad_value);
|
||||||
|
|
||||||
|
auto& x_lod = x_ptr->lod();
|
||||||
|
auto& x_last_level_lod = x_lod[x_lod.size() - 1];
|
||||||
|
auto seq_num = x_last_level_lod.size() - 1;
|
||||||
|
auto max_len = out_ptr->dims()[0] / seq_num;
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(max_len * seq_num, out_ptr->dims()[0],
|
||||||
|
"First dimension of `Out` should be equal to "
|
||||||
|
"maximum length mulplied by sequence number.");
|
||||||
|
|
||||||
|
for (size_t i = 1; i < x_last_level_lod.size(); ++i) {
|
||||||
|
auto x_start = x_last_level_lod[i - 1];
|
||||||
|
auto x_end = x_last_level_lod[i];
|
||||||
|
auto out_start = (i - 1) * max_len;
|
||||||
|
auto out_end = out_start + (x_end - x_start);
|
||||||
|
auto x_sub_tensor = x_ptr->Slice(x_start, x_end);
|
||||||
|
auto out_sub_tensor = out_ptr->Slice(out_start, out_end);
|
||||||
|
framework::TensorCopy(x_sub_tensor, ctx.GetPlace(), &out_sub_tensor);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class SequencePadGradOpKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto* x_ptr = ctx.Input<LoDTensor>("X");
|
||||||
|
auto* g_out_ptr = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
|
||||||
|
auto* g_x_ptr = ctx.Output<LoDTensor>(framework::GradVarName("X"));
|
||||||
|
|
||||||
|
math::SetConstant<DeviceContext, T> set_func;
|
||||||
|
set_func(ctx.template device_context<DeviceContext>(), g_x_ptr,
|
||||||
|
static_cast<T>(0));
|
||||||
|
|
||||||
|
auto& x_lod = x_ptr->lod();
|
||||||
|
auto& x_last_level_lod = x_lod[x_lod.size() - 1];
|
||||||
|
auto seq_num = x_last_level_lod.size() - 1;
|
||||||
|
int64_t max_len = g_out_ptr->dims()[0] / seq_num;
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(max_len * seq_num, g_out_ptr->dims()[0],
|
||||||
|
"First dimension of `Out` should be equal to "
|
||||||
|
"maximum length mulplied by sequence number.");
|
||||||
|
|
||||||
|
for (size_t i = 1; i < x_last_level_lod.size(); ++i) {
|
||||||
|
auto x_start = x_last_level_lod[i - 1];
|
||||||
|
auto x_end = x_last_level_lod[i];
|
||||||
|
auto out_start = (i - 1) * max_len;
|
||||||
|
auto out_end = out_start + (x_end - x_start);
|
||||||
|
|
||||||
|
auto g_out_sub = g_out_ptr->Slice(out_start, out_end);
|
||||||
|
auto g_x_sub = g_x_ptr->Slice(x_start, x_end);
|
||||||
|
framework::TensorCopy(g_x_sub, ctx.GetPlace(), &g_out_sub);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
Loading…
Reference in new issue