|
|
|
@ -12,7 +12,10 @@
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
from . import layer
|
|
|
|
|
from paddle.proto.ModelConfig_pb2 import ModelConfig
|
|
|
|
|
import paddle.trainer_config_helpers as conf_helps
|
|
|
|
|
import layer as v2_layer
|
|
|
|
|
import data_type
|
|
|
|
|
|
|
|
|
|
__all__ = ['Topology']
|
|
|
|
|
|
|
|
|
@ -23,22 +26,101 @@ class Topology(object):
|
|
|
|
|
and network configs.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, cost):
|
|
|
|
|
self.cost = cost
|
|
|
|
|
self.__model_config__ = layer.parse_network(cost)
|
|
|
|
|
def __init__(self, *layers):
|
|
|
|
|
for layer in layers:
|
|
|
|
|
if not isinstance(layer, v2_layer.LayerV2):
|
|
|
|
|
raise ValueError('create must pass a topologies '
|
|
|
|
|
'which type is paddle.layer.Layer')
|
|
|
|
|
self.layers = layers
|
|
|
|
|
self.__model_config__ = v2_layer.parse_network(*layers)
|
|
|
|
|
assert isinstance(self.__model_config__, ModelConfig)
|
|
|
|
|
|
|
|
|
|
def __call__(self):
|
|
|
|
|
def proto(self):
|
|
|
|
|
return self.__model_config__
|
|
|
|
|
|
|
|
|
|
def get_layer(self, name):
|
|
|
|
|
"""
|
|
|
|
|
get v2.Layer Class instance by layer name
|
|
|
|
|
:param name:
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
result_layer = []
|
|
|
|
|
|
|
|
|
|
def find_layer_by_name(layer, layer_name):
|
|
|
|
|
if layer.name == layer_name and len(result_layer) == 0:
|
|
|
|
|
result_layer.append(layer)
|
|
|
|
|
for parent_layer in layer.__parent_layers__.values():
|
|
|
|
|
find_layer_by_name(parent_layer, layer_name)
|
|
|
|
|
|
|
|
|
|
for layer in self.layers:
|
|
|
|
|
find_layer_by_name(layer, name)
|
|
|
|
|
|
|
|
|
|
return result_layer[0]
|
|
|
|
|
|
|
|
|
|
def get_data_layer(self):
|
|
|
|
|
"""
|
|
|
|
|
get all data layer
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
data_layers = []
|
|
|
|
|
|
|
|
|
|
def find_data_layer(layer):
|
|
|
|
|
assert isinstance(layer, layer.LayerV2)
|
|
|
|
|
if isinstance(layer, v2_layer.DataLayerV2):
|
|
|
|
|
if len(
|
|
|
|
|
filter(lambda data_layer: data_layer.name == layer.name,
|
|
|
|
|
data_layers)) == 0:
|
|
|
|
|
data_layers.append(layer)
|
|
|
|
|
for parent_layer in layer.__parent_layers__.values():
|
|
|
|
|
find_data_layer(parent_layer)
|
|
|
|
|
|
|
|
|
|
for layer in self.layers:
|
|
|
|
|
find_data_layer(layer)
|
|
|
|
|
|
|
|
|
|
return data_layers
|
|
|
|
|
|
|
|
|
|
def get_layer_proto(self, name):
|
|
|
|
|
"""
|
|
|
|
|
get layer by layer name
|
|
|
|
|
:param name:
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
pass
|
|
|
|
|
layers = filter(lambda layer: layer.name == name,
|
|
|
|
|
self.__model_config__.layers)
|
|
|
|
|
if len(layers) is 1:
|
|
|
|
|
return layers[0]
|
|
|
|
|
else:
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
def data_type(self):
|
|
|
|
|
"""
|
|
|
|
|
get data_type from proto, such as:
|
|
|
|
|
[('image', dense_vector(768)), ('label', integer_value(10))]
|
|
|
|
|
the order is the same with __model_config__.input_layer_names
|
|
|
|
|
"""
|
|
|
|
|
pass
|
|
|
|
|
data_types_lists = []
|
|
|
|
|
for layer_name in self.__model_config__.input_layer_names:
|
|
|
|
|
data_types_lists.append(
|
|
|
|
|
(layer_name, self.get_layer(layer_name).type))
|
|
|
|
|
|
|
|
|
|
return data_types_lists
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
pixel = v2_layer.data(name='pixel', type=data_type.dense_vector(784))
|
|
|
|
|
label = v2_layer.data(name='label', type=data_type.integer_value(10))
|
|
|
|
|
hidden = v2_layer.fc(input=pixel,
|
|
|
|
|
size=100,
|
|
|
|
|
act=conf_helps.SigmoidActivation())
|
|
|
|
|
inference = v2_layer.fc(input=hidden,
|
|
|
|
|
size=10,
|
|
|
|
|
act=conf_helps.SoftmaxActivation())
|
|
|
|
|
maxid = v2_layer.max_id(input=inference)
|
|
|
|
|
cost1 = v2_layer.classification_cost(input=inference, label=label)
|
|
|
|
|
cost2 = v2_layer.cross_entropy_cost(input=inference, label=label)
|
|
|
|
|
|
|
|
|
|
print Topology(cost1).proto()
|
|
|
|
|
print Topology(cost2).proto()
|
|
|
|
|
print Topology(cost1, cost2).proto()
|
|
|
|
|
print Topology(cost2).proto()
|
|
|
|
|
print Topology(inference, maxid).proto()
|
|
|
|
|