parent
c33575a51c
commit
7eeaae1695
@ -0,0 +1,101 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
def deconv2d_forward_naive(input_, filter_, deconv_param):
|
||||||
|
# [2, 3, 5, 5]
|
||||||
|
in_n, in_c, in_h, in_w = input_.shape
|
||||||
|
# [3, 6, 3, 3]
|
||||||
|
f_c, out_c, f_h, f_w = filter_.shape
|
||||||
|
assert in_c == f_c
|
||||||
|
|
||||||
|
stride, pad = deconv_param['stride'], deconv_param['pad']
|
||||||
|
out_h = (in_h - 1) * stride[0] + f_h
|
||||||
|
out_w = (in_w - 1) * stride[1] + f_w
|
||||||
|
|
||||||
|
out = np.zeros((in_n, out_c, out_h, out_w))
|
||||||
|
|
||||||
|
for n in range(in_n):
|
||||||
|
for i in range(in_h):
|
||||||
|
for j in range(in_w):
|
||||||
|
input_masked = input_[n, :, i, j] # (c)
|
||||||
|
input_masked = np.reshape(input_masked, (in_c, 1, 1))
|
||||||
|
input_masked = np.tile(input_masked, (1, f_h, f_w))
|
||||||
|
|
||||||
|
for k in range(out_c):
|
||||||
|
tmp_out = np.sum(input_masked * filter_[:, k, :, :], axis=0)
|
||||||
|
i1, i2 = i * stride[0], i * stride[0] + f_h
|
||||||
|
j1, j2 = j * stride[0], j * stride[0] + f_w
|
||||||
|
out[n, k, i1:i2, j1:j2] += tmp_out
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class TestDeconv2dOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
# init as deconv
|
||||||
|
self.init_op_type()
|
||||||
|
|
||||||
|
# [2, 3, 5, 5] -> kernel [3, 6, 3, 3] -> output [2, 6, 7, 7]
|
||||||
|
self.init_test_case()
|
||||||
|
|
||||||
|
deconv2d_param = {'stride': self.stride, 'pad': self.pad}
|
||||||
|
input_ = np.random.random(self.input_size).astype("float32")
|
||||||
|
filter_ = np.random.random(self.filter_size).astype("float32")
|
||||||
|
output = deconv2d_forward_naive(input_, filter_, deconv2d_param)
|
||||||
|
# print 'deconv output py', output, output.shape
|
||||||
|
|
||||||
|
self.inputs = {'Input': input_, 'Filter': filter_}
|
||||||
|
self.attrs = {
|
||||||
|
'strides': self.stride,
|
||||||
|
'paddings': self.pad,
|
||||||
|
# 'dilations': self.dilations
|
||||||
|
}
|
||||||
|
self.outputs = {'Output': output}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
print 'check output here'
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(
|
||||||
|
set(['Input', 'Filter']), 'Output', max_relative_error=0.05)
|
||||||
|
|
||||||
|
def test_check_grad_no_filter(self):
|
||||||
|
self.check_grad(
|
||||||
|
['Input'],
|
||||||
|
'Output',
|
||||||
|
max_relative_error=0.05,
|
||||||
|
no_grad_set=set(['Filter']))
|
||||||
|
|
||||||
|
def test_check_grad_no_input(self):
|
||||||
|
self.check_grad(
|
||||||
|
['Filter'],
|
||||||
|
'Output',
|
||||||
|
max_relative_error=0.05,
|
||||||
|
no_grad_set=set(['Input']))
|
||||||
|
|
||||||
|
def init_test_case(self):
|
||||||
|
self.pad = [0, 0]
|
||||||
|
self.stride = [1, 1]
|
||||||
|
self.dilations = [1, 1]
|
||||||
|
self.input_size = [2, 3, 5, 5] # NCHW
|
||||||
|
f_c = self.input_size[1]
|
||||||
|
self.filter_size = [f_c, 6, 3, 3]
|
||||||
|
|
||||||
|
def init_op_type(self):
|
||||||
|
self.op_type = "deconv2d"
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
class TestCudnn(TestConv2dOp):
|
||||||
|
def init_group(self):
|
||||||
|
self.groups = 1
|
||||||
|
|
||||||
|
def init_op_type(self):
|
||||||
|
self.op_type = "conv_cudnn"
|
||||||
|
"""
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue