add cuda generator (#26786)
parent
c4846196b8
commit
7f3e6ca596
@ -0,0 +1,163 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Test cloud role maker."""
|
||||
|
||||
from __future__ import print_function
|
||||
import os
|
||||
import unittest
|
||||
import paddle.fluid.generator as generator
|
||||
|
||||
import time # temp for debug
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.fluid.core as core
|
||||
|
||||
|
||||
class TestGeneratorSeed(unittest.TestCase):
|
||||
"""
|
||||
Test cases for cpu generator seed.
|
||||
"""
|
||||
|
||||
def test_gen_dropout_dygraph(self):
|
||||
gen = paddle.manual_seed(12343)
|
||||
|
||||
fluid.enable_dygraph()
|
||||
|
||||
gen.manual_seed(111111111)
|
||||
st = paddle.get_cuda_rng_state()
|
||||
|
||||
x = fluid.layers.uniform_random(
|
||||
[2, 10], dtype="float32", min=0.0, max=1.0)
|
||||
x_again = fluid.layers.uniform_random(
|
||||
[2, 10], dtype="float32", min=0.0, max=1.0)
|
||||
x_third = fluid.layers.uniform_random(
|
||||
[2, 10], dtype="float32", min=0.0, max=1.0)
|
||||
print("x: {}".format(x.numpy()))
|
||||
print("x_again: {}".format(x_again.numpy()))
|
||||
x = x + x_again + x_third
|
||||
y = fluid.layers.dropout(x, 0.5)
|
||||
|
||||
paddle.set_cuda_rng_state(st)
|
||||
|
||||
x1 = fluid.layers.uniform_random(
|
||||
[2, 10], dtype="float32", min=0.0, max=1.0)
|
||||
x1_again = fluid.layers.uniform_random(
|
||||
[2, 10], dtype="float32", min=0.0, max=1.0)
|
||||
x1_third = fluid.layers.uniform_random(
|
||||
[2, 10], dtype="float32", min=0.0, max=1.0)
|
||||
x1 = x1 + x1_again + x1_third
|
||||
y1 = fluid.layers.dropout(x1, 0.5)
|
||||
y_np = y.numpy()
|
||||
y1_np = y1.numpy()
|
||||
|
||||
if core.is_compiled_with_cuda():
|
||||
print(">>>>>>> dropout dygraph >>>>>>>")
|
||||
self.assertTrue(np.allclose(y_np, y1_np))
|
||||
|
||||
def test_generator_gaussian_random_dygraph(self):
|
||||
"""Test Generator seed."""
|
||||
fluid.enable_dygraph()
|
||||
|
||||
paddle.manual_seed(12312321111)
|
||||
x = fluid.layers.gaussian_random([120], dtype="float32")
|
||||
st1 = paddle.get_cuda_rng_state()
|
||||
x1 = fluid.layers.gaussian_random([120], dtype="float32")
|
||||
paddle.set_cuda_rng_state(st1)
|
||||
x2 = fluid.layers.gaussian_random([120], dtype="float32")
|
||||
paddle.manual_seed(12312321111)
|
||||
x3 = fluid.layers.gaussian_random([120], dtype="float32")
|
||||
x_np = x.numpy()
|
||||
x1_np = x1.numpy()
|
||||
x2_np = x2.numpy()
|
||||
x3_np = x3.numpy()
|
||||
|
||||
if core.is_compiled_with_cuda():
|
||||
print(">>>>>>> gaussian random dygraph >>>>>>>")
|
||||
self.assertTrue(np.allclose(x1_np, x2_np))
|
||||
self.assertTrue(np.allclose(x_np, x3_np))
|
||||
|
||||
def test_generator_randint_dygraph(self):
|
||||
"""Test Generator seed."""
|
||||
|
||||
fluid.enable_dygraph()
|
||||
|
||||
gen = paddle.manual_seed(12312321111)
|
||||
x = paddle.randint(low=10, shape=[10], dtype="int32")
|
||||
st1 = gen.get_state()
|
||||
x1 = paddle.randint(low=10, shape=[10], dtype="int32")
|
||||
gen.set_state(st1)
|
||||
x2 = paddle.randint(low=10, shape=[10], dtype="int32")
|
||||
paddle.manual_seed(12312321111)
|
||||
x3 = paddle.randint(low=10, shape=[10], dtype="int32")
|
||||
x_np = x.numpy()
|
||||
x1_np = x1.numpy()
|
||||
x2_np = x2.numpy()
|
||||
x3_np = x3.numpy()
|
||||
|
||||
if core.is_compiled_with_cuda():
|
||||
print(">>>>>>> randint dygraph >>>>>>>")
|
||||
self.assertTrue(np.allclose(x1_np, x2_np))
|
||||
self.assertTrue(np.allclose(x_np, x3_np))
|
||||
|
||||
def test_gen_TruncatedNormal_initializer(self):
|
||||
fluid.disable_dygraph()
|
||||
|
||||
gen = paddle.manual_seed(123123143)
|
||||
cur_state = paddle.get_cuda_rng_state()
|
||||
|
||||
startup_program = fluid.Program()
|
||||
train_program = fluid.Program()
|
||||
with fluid.program_guard(train_program, startup_program):
|
||||
# example 1:
|
||||
# attr shape is a list which doesn't contain tensor Variable.
|
||||
x = fluid.layers.uniform_random(shape=[2, 10])
|
||||
result_1 = fluid.layers.fc(
|
||||
input=x,
|
||||
size=10,
|
||||
param_attr=fluid.initializer.TruncatedNormal(
|
||||
loc=0.0, scale=2.0))
|
||||
result_2 = fluid.layers.fc(
|
||||
input=x,
|
||||
size=10,
|
||||
param_attr=fluid.initializer.TruncatedNormal(
|
||||
loc=0.0, scale=2.0))
|
||||
|
||||
exe = fluid.Executor(fluid.CPUPlace())
|
||||
exe.run(startup_program)
|
||||
out1 = exe.run(train_program,
|
||||
feed={},
|
||||
fetch_list=[result_1, result_2])
|
||||
|
||||
paddle.manual_seed(123123143)
|
||||
with fluid.program_guard(train_program, startup_program):
|
||||
exe.run(startup_program)
|
||||
out2 = exe.run(train_program,
|
||||
feed={},
|
||||
fetch_list=[result_1, result_2])
|
||||
|
||||
out1_res1 = np.array(out1[0])
|
||||
out1_res2 = np.array(out1[1])
|
||||
out2_res1 = np.array(out2[0])
|
||||
out2_res2 = np.array(out2[1])
|
||||
|
||||
if core.is_compiled_with_cuda():
|
||||
print(">>>>>>> truncated normal static >>>>>>>")
|
||||
self.assertTrue(np.allclose(out1_res1, out2_res1))
|
||||
self.assertTrue(np.allclose(out1_res2, out2_res2))
|
||||
self.assertTrue(not np.allclose(out1_res2, out1_res1))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue