|
|
|
@ -31,42 +31,49 @@ def dequantize_max_abs(x, scale, max_range):
|
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def channel_wise_quantize_max_abs(x, max_range):
|
|
|
|
|
def channel_wise_quantize_max_abs(x, quant_bit=8):
|
|
|
|
|
scales = []
|
|
|
|
|
for i in range(x.shape[0]):
|
|
|
|
|
scales.append(np.max(np.abs(x[i])).astype("float32"))
|
|
|
|
|
|
|
|
|
|
y = x.copy()
|
|
|
|
|
max_range = math.pow(2, quant_bit - 1) - 1
|
|
|
|
|
for i, scale in enumerate(scales):
|
|
|
|
|
y[i] = np.round(y[i] / scale * max_range)
|
|
|
|
|
return y, scales
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def channel_wise_dequantize_max_abs(x, scales, max_range):
|
|
|
|
|
def channel_wise_dequantize_max_abs(x,
|
|
|
|
|
scales,
|
|
|
|
|
quant_bits,
|
|
|
|
|
activation_scale=None):
|
|
|
|
|
y = x.copy()
|
|
|
|
|
for i in range(x.shape[0]):
|
|
|
|
|
y[i] = (scales[i] / max_range) * y[i]
|
|
|
|
|
y[i] = (scales[i] / (math.pow(2, quant_bits[0] - 1) - 1)) * y[i]
|
|
|
|
|
if activation_scale is not None:
|
|
|
|
|
y *= activation_scale / (math.pow(2, quant_bits[1] - 1) - 1)
|
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestFakeChannelWiseDequantizeMaxAbsOpTwoScales(OpTest):
|
|
|
|
|
def set_args(self):
|
|
|
|
|
self.quant_bits = [8, 2]
|
|
|
|
|
self.quant_bits = [8, 8]
|
|
|
|
|
self.data_type = "float32"
|
|
|
|
|
self.activation_scale = 0.7861
|
|
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.set_args()
|
|
|
|
|
self.op_type = "fake_channel_wise_dequantize_max_abs"
|
|
|
|
|
x = np.random.randn(4, 3, 64, 64).astype(self.data_type)
|
|
|
|
|
max_range = math.pow(2, self.quant_bits[0] - 1) - 1
|
|
|
|
|
max_range *= (math.pow(2, self.quant_bits[1] - 1) - 1)
|
|
|
|
|
yq, scales = channel_wise_quantize_max_abs(x, max_range)
|
|
|
|
|
ydq = channel_wise_dequantize_max_abs(yq, scales, max_range)
|
|
|
|
|
yq, scales = channel_wise_quantize_max_abs(x, self.quant_bits[0])
|
|
|
|
|
ydq = channel_wise_dequantize_max_abs(yq, scales, self.quant_bits,
|
|
|
|
|
self.activation_scale)
|
|
|
|
|
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': yq,
|
|
|
|
|
'Scales': [("scales0", np.array(scales).astype(self.data_type)),
|
|
|
|
|
("scales1", np.array([1.0]).astype(self.data_type))]
|
|
|
|
|
("scales1", np.array(
|
|
|
|
|
[self.activation_scale]).astype(self.data_type))]
|
|
|
|
|
}
|
|
|
|
|
self.attrs = {'quant_bits': self.quant_bits}
|
|
|
|
|
self.outputs = {'Out': ydq}
|
|
|
|
@ -84,9 +91,8 @@ class TestFakeChannelWiseDequantizeMaxAbsOpOneScale(OpTest):
|
|
|
|
|
self.set_args()
|
|
|
|
|
self.op_type = "fake_channel_wise_dequantize_max_abs"
|
|
|
|
|
x = np.random.randn(4, 3, 64, 64).astype(self.data_type)
|
|
|
|
|
max_range = math.pow(2, self.quant_bits[0] - 1) - 1
|
|
|
|
|
yq, scales = channel_wise_quantize_max_abs(x, max_range)
|
|
|
|
|
ydq = channel_wise_dequantize_max_abs(yq, scales, max_range)
|
|
|
|
|
yq, scales = channel_wise_quantize_max_abs(x, self.quant_bits[0])
|
|
|
|
|
ydq = channel_wise_dequantize_max_abs(yq, scales, self.quant_bits)
|
|
|
|
|
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': yq,
|
|
|
|
|