commit
80c9f66144
@ -0,0 +1,74 @@
|
|||||||
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import paddle.v2 as paddle
|
||||||
|
|
||||||
|
__all__ = ['resnet_cifar10']
|
||||||
|
|
||||||
|
|
||||||
|
def conv_bn_layer(input,
|
||||||
|
ch_out,
|
||||||
|
filter_size,
|
||||||
|
stride,
|
||||||
|
padding,
|
||||||
|
active_type=paddle.activation.Relu(),
|
||||||
|
ch_in=None):
|
||||||
|
tmp = paddle.layer.img_conv(
|
||||||
|
input=input,
|
||||||
|
filter_size=filter_size,
|
||||||
|
num_channels=ch_in,
|
||||||
|
num_filters=ch_out,
|
||||||
|
stride=stride,
|
||||||
|
padding=padding,
|
||||||
|
act=paddle.activation.Linear(),
|
||||||
|
bias_attr=False)
|
||||||
|
return paddle.layer.batch_norm(input=tmp, act=active_type)
|
||||||
|
|
||||||
|
|
||||||
|
def shortcut(ipt, n_in, n_out, stride):
|
||||||
|
if n_in != n_out:
|
||||||
|
return conv_bn_layer(ipt, n_out, 1, stride, 0,
|
||||||
|
paddle.activation.Linear())
|
||||||
|
else:
|
||||||
|
return ipt
|
||||||
|
|
||||||
|
|
||||||
|
def basicblock(ipt, ch_out, stride):
|
||||||
|
ch_in = ch_out * 2
|
||||||
|
tmp = conv_bn_layer(ipt, ch_out, 3, stride, 1)
|
||||||
|
tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, paddle.activation.Linear())
|
||||||
|
short = shortcut(ipt, ch_in, ch_out, stride)
|
||||||
|
return paddle.layer.addto(input=[tmp, short], act=paddle.activation.Relu())
|
||||||
|
|
||||||
|
|
||||||
|
def layer_warp(block_func, ipt, features, count, stride):
|
||||||
|
tmp = block_func(ipt, features, stride)
|
||||||
|
for i in range(1, count):
|
||||||
|
tmp = block_func(tmp, features, 1)
|
||||||
|
return tmp
|
||||||
|
|
||||||
|
|
||||||
|
def resnet_cifar10(ipt, depth=32):
|
||||||
|
# depth should be one of 20, 32, 44, 56, 110, 1202
|
||||||
|
assert (depth - 2) % 6 == 0
|
||||||
|
n = (depth - 2) / 6
|
||||||
|
nStages = {16, 64, 128}
|
||||||
|
conv1 = conv_bn_layer(
|
||||||
|
ipt, ch_in=3, ch_out=16, filter_size=3, stride=1, padding=1)
|
||||||
|
res1 = layer_warp(basicblock, conv1, 16, n, 1)
|
||||||
|
res2 = layer_warp(basicblock, res1, 32, n, 2)
|
||||||
|
res3 = layer_warp(basicblock, res2, 64, n, 2)
|
||||||
|
pool = paddle.layer.img_pool(
|
||||||
|
input=res3, pool_size=8, stride=1, pool_type=paddle.pooling.Avg())
|
||||||
|
return pool
|
@ -0,0 +1,91 @@
|
|||||||
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License
|
||||||
|
|
||||||
|
import sys
|
||||||
|
import paddle.v2 as paddle
|
||||||
|
from api_v2_vgg import vgg_bn_drop
|
||||||
|
from api_v2_resnet import resnet_cifar10
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
datadim = 3 * 32 * 32
|
||||||
|
classdim = 10
|
||||||
|
|
||||||
|
# PaddlePaddle init
|
||||||
|
paddle.init(use_gpu=True, trainer_count=1)
|
||||||
|
|
||||||
|
image = paddle.layer.data(
|
||||||
|
name="image", type=paddle.data_type.dense_vector(datadim))
|
||||||
|
|
||||||
|
# Add neural network config
|
||||||
|
# option 1. resnet
|
||||||
|
net = resnet_cifar10(image, depth=32)
|
||||||
|
# option 2. vgg
|
||||||
|
# net = vgg_bn_drop(image)
|
||||||
|
|
||||||
|
out = paddle.layer.fc(input=net,
|
||||||
|
size=classdim,
|
||||||
|
act=paddle.activation.Softmax())
|
||||||
|
|
||||||
|
lbl = paddle.layer.data(
|
||||||
|
name="label", type=paddle.data_type.integer_value(classdim))
|
||||||
|
cost = paddle.layer.classification_cost(input=out, label=lbl)
|
||||||
|
|
||||||
|
# Create parameters
|
||||||
|
parameters = paddle.parameters.create(cost)
|
||||||
|
|
||||||
|
# Create optimizer
|
||||||
|
momentum_optimizer = paddle.optimizer.Momentum(
|
||||||
|
momentum=0.9,
|
||||||
|
regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
|
||||||
|
learning_rate=0.1 / 128.0,
|
||||||
|
learning_rate_decay_a=0.1,
|
||||||
|
learning_rate_decay_b=50000 * 100,
|
||||||
|
learning_rate_schedule='discexp',
|
||||||
|
batch_size=128)
|
||||||
|
|
||||||
|
# End batch and end pass event handler
|
||||||
|
def event_handler(event):
|
||||||
|
if isinstance(event, paddle.event.EndIteration):
|
||||||
|
if event.batch_id % 100 == 0:
|
||||||
|
print "\nPass %d, Batch %d, Cost %f, %s" % (
|
||||||
|
event.pass_id, event.batch_id, event.cost, event.metrics)
|
||||||
|
else:
|
||||||
|
sys.stdout.write('.')
|
||||||
|
sys.stdout.flush()
|
||||||
|
if isinstance(event, paddle.event.EndPass):
|
||||||
|
result = trainer.test(
|
||||||
|
reader=paddle.reader.batched(
|
||||||
|
paddle.dataset.cifar.test10(), batch_size=128),
|
||||||
|
reader_dict={'image': 0,
|
||||||
|
'label': 1})
|
||||||
|
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
|
||||||
|
|
||||||
|
# Create trainer
|
||||||
|
trainer = paddle.trainer.SGD(cost=cost,
|
||||||
|
parameters=parameters,
|
||||||
|
update_equation=momentum_optimizer)
|
||||||
|
trainer.train(
|
||||||
|
reader=paddle.reader.batched(
|
||||||
|
paddle.reader.shuffle(
|
||||||
|
paddle.dataset.cifar.train10(), buf_size=50000),
|
||||||
|
batch_size=128),
|
||||||
|
num_passes=5,
|
||||||
|
event_handler=event_handler,
|
||||||
|
reader_dict={'image': 0,
|
||||||
|
'label': 1})
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
@ -0,0 +1,47 @@
|
|||||||
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import paddle.v2 as paddle
|
||||||
|
|
||||||
|
__all__ = ['vgg_bn_drop']
|
||||||
|
|
||||||
|
|
||||||
|
def vgg_bn_drop(input):
|
||||||
|
def conv_block(ipt, num_filter, groups, dropouts, num_channels=None):
|
||||||
|
return paddle.networks.img_conv_group(
|
||||||
|
input=ipt,
|
||||||
|
num_channels=num_channels,
|
||||||
|
pool_size=2,
|
||||||
|
pool_stride=2,
|
||||||
|
conv_num_filter=[num_filter] * groups,
|
||||||
|
conv_filter_size=3,
|
||||||
|
conv_act=paddle.activation.Relu(),
|
||||||
|
conv_with_batchnorm=True,
|
||||||
|
conv_batchnorm_drop_rate=dropouts,
|
||||||
|
pool_type=paddle.pooling.Max())
|
||||||
|
|
||||||
|
conv1 = conv_block(input, 64, 2, [0.3, 0], 3)
|
||||||
|
conv2 = conv_block(conv1, 128, 2, [0.4, 0])
|
||||||
|
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
|
||||||
|
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
|
||||||
|
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
|
||||||
|
|
||||||
|
drop = paddle.layer.dropout(input=conv5, dropout_rate=0.5)
|
||||||
|
fc1 = paddle.layer.fc(input=drop, size=512, act=paddle.activation.Linear())
|
||||||
|
bn = paddle.layer.batch_norm(
|
||||||
|
input=fc1,
|
||||||
|
act=paddle.activation.Relu(),
|
||||||
|
layer_attr=paddle.attr.Extra(drop_rate=0.5))
|
||||||
|
fc2 = paddle.layer.fc(input=bn, size=512, act=paddle.activation.Linear())
|
||||||
|
return fc2
|
@ -1,4 +1,8 @@
|
|||||||
import mnist
|
import mnist
|
||||||
|
import imikolov
|
||||||
|
import imdb
|
||||||
|
import cifar
|
||||||
|
import movielens
|
||||||
import uci_housing
|
import uci_housing
|
||||||
|
|
||||||
__all__ = ['mnist', 'uci_housing']
|
__all__ = ['mnist', 'imikolov', 'imdb', 'cifar', 'movielens', 'uci_housing']
|
||||||
|
Loading…
Reference in new issue