|
|
|
@ -27,10 +27,17 @@ import paddle
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
|
import paddle.fluid.profiler as profiler
|
|
|
|
|
from recordio_converter import imagenet_train, imagenet_test
|
|
|
|
|
# from recordio_converter import imagenet_train, imagenet_test
|
|
|
|
|
from imagenet_reader import train, val
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
|
|
|
|
|
def conv_bn_layer(input,
|
|
|
|
|
ch_out,
|
|
|
|
|
filter_size,
|
|
|
|
|
stride,
|
|
|
|
|
padding,
|
|
|
|
|
act='relu',
|
|
|
|
|
is_train=True):
|
|
|
|
|
conv1 = fluid.layers.conv2d(
|
|
|
|
|
input=input,
|
|
|
|
|
filter_size=filter_size,
|
|
|
|
@ -39,29 +46,31 @@ def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
|
|
|
|
|
padding=padding,
|
|
|
|
|
act=None,
|
|
|
|
|
bias_attr=False)
|
|
|
|
|
return fluid.layers.batch_norm(input=conv1, act=act)
|
|
|
|
|
return fluid.layers.batch_norm(input=conv1, act=act, is_test=not is_train)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def shortcut(input, ch_out, stride):
|
|
|
|
|
def shortcut(input, ch_out, stride, is_train=True):
|
|
|
|
|
ch_in = input.shape[1] # if args.data_format == 'NCHW' else input.shape[-1]
|
|
|
|
|
if ch_in != ch_out:
|
|
|
|
|
return conv_bn_layer(input, ch_out, 1, stride, 0, None)
|
|
|
|
|
return conv_bn_layer(
|
|
|
|
|
input, ch_out, 1, stride, 0, None, is_train=is_train)
|
|
|
|
|
else:
|
|
|
|
|
return input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def basicblock(input, ch_out, stride):
|
|
|
|
|
short = shortcut(input, ch_out, stride)
|
|
|
|
|
conv1 = conv_bn_layer(input, ch_out, 3, stride, 1)
|
|
|
|
|
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None)
|
|
|
|
|
def basicblock(input, ch_out, stride, is_train=True):
|
|
|
|
|
short = shortcut(input, ch_out, stride, is_train=is_train)
|
|
|
|
|
conv1 = conv_bn_layer(input, ch_out, 3, stride, 1, is_train=is_train)
|
|
|
|
|
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None, is_train=is_train)
|
|
|
|
|
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def bottleneck(input, ch_out, stride):
|
|
|
|
|
short = shortcut(input, ch_out * 4, stride)
|
|
|
|
|
conv1 = conv_bn_layer(input, ch_out, 1, stride, 0)
|
|
|
|
|
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1)
|
|
|
|
|
conv3 = conv_bn_layer(conv2, ch_out * 4, 1, 1, 0, act=None)
|
|
|
|
|
def bottleneck(input, ch_out, stride, is_train=True):
|
|
|
|
|
short = shortcut(input, ch_out * 4, stride, is_train=is_train)
|
|
|
|
|
conv1 = conv_bn_layer(input, ch_out, 1, stride, 0, is_train=is_train)
|
|
|
|
|
conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, is_train=is_train)
|
|
|
|
|
conv3 = conv_bn_layer(
|
|
|
|
|
conv2, ch_out * 4, 1, 1, 0, act=None, is_train=is_train)
|
|
|
|
|
return fluid.layers.elementwise_add(x=short, y=conv3, act='relu')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -72,7 +81,11 @@ def layer_warp(block_func, input, ch_out, count, stride):
|
|
|
|
|
return res_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def resnet_imagenet(input, class_dim, depth=50, data_format='NCHW'):
|
|
|
|
|
def resnet_imagenet(input,
|
|
|
|
|
class_dim,
|
|
|
|
|
depth=50,
|
|
|
|
|
data_format='NCHW',
|
|
|
|
|
is_train=True):
|
|
|
|
|
|
|
|
|
|
cfg = {
|
|
|
|
|
18: ([2, 2, 2, 1], basicblock),
|
|
|
|
@ -115,8 +128,9 @@ def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'):
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_model(args):
|
|
|
|
|
def _model_reader_dshape_classdim(args, is_train):
|
|
|
|
|
model = resnet_cifar10
|
|
|
|
|
reader = None
|
|
|
|
|
if args.data_set == "cifar10":
|
|
|
|
|
class_dim = 10
|
|
|
|
|
if args.data_format == 'NCHW':
|
|
|
|
@ -124,8 +138,10 @@ def get_model(args):
|
|
|
|
|
else:
|
|
|
|
|
dshape = [32, 32, 3]
|
|
|
|
|
model = resnet_cifar10
|
|
|
|
|
train_reader = paddle.dataset.cifar.train10()
|
|
|
|
|
test_reader = paddle.dataset.cifar.test10()
|
|
|
|
|
if is_train:
|
|
|
|
|
reader = paddle.dataset.cifar.train10()
|
|
|
|
|
else:
|
|
|
|
|
reader = paddle.dataset.cifar.test10()
|
|
|
|
|
elif args.data_set == "flowers":
|
|
|
|
|
class_dim = 102
|
|
|
|
|
if args.data_format == 'NCHW':
|
|
|
|
@ -133,8 +149,10 @@ def get_model(args):
|
|
|
|
|
else:
|
|
|
|
|
dshape = [224, 224, 3]
|
|
|
|
|
model = resnet_imagenet
|
|
|
|
|
train_reader = paddle.dataset.flowers.train()
|
|
|
|
|
test_reader = paddle.dataset.flowers.test()
|
|
|
|
|
if is_train:
|
|
|
|
|
reader = paddle.dataset.flowers.train()
|
|
|
|
|
else:
|
|
|
|
|
reader = paddle.dataset.flowers.test()
|
|
|
|
|
elif args.data_set == "imagenet":
|
|
|
|
|
class_dim = 1000
|
|
|
|
|
if args.data_format == 'NCHW':
|
|
|
|
@ -145,64 +163,89 @@ def get_model(args):
|
|
|
|
|
if not args.data_path:
|
|
|
|
|
raise Exception(
|
|
|
|
|
"Must specify --data_path when training with imagenet")
|
|
|
|
|
train_reader = imagenet_train(args.data_path)
|
|
|
|
|
test_reader = imagenet_test(args.data_path)
|
|
|
|
|
|
|
|
|
|
if args.use_reader_op:
|
|
|
|
|
filelist = [
|
|
|
|
|
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
|
|
|
|
|
]
|
|
|
|
|
data_file = fluid.layers.open_files(
|
|
|
|
|
filenames=filelist,
|
|
|
|
|
shapes=[[-1] + dshape, (-1, 1)],
|
|
|
|
|
lod_levels=[0, 0],
|
|
|
|
|
dtypes=["float32", "int64"],
|
|
|
|
|
thread_num=args.gpus,
|
|
|
|
|
pass_num=args.pass_num)
|
|
|
|
|
data_file = fluid.layers.double_buffer(
|
|
|
|
|
fluid.layers.batch(
|
|
|
|
|
data_file, batch_size=args.batch_size))
|
|
|
|
|
input, label = fluid.layers.read_file(data_file)
|
|
|
|
|
if not args.use_reader_op:
|
|
|
|
|
if is_train:
|
|
|
|
|
reader = train()
|
|
|
|
|
else:
|
|
|
|
|
input = fluid.layers.data(name='data', shape=dshape, dtype='float32')
|
|
|
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
|
|
|
|
|
|
if args.device == 'CPU' and args.cpus > 1:
|
|
|
|
|
places = fluid.layers.get_places(args.cpus)
|
|
|
|
|
pd = fluid.layers.ParallelDo(places)
|
|
|
|
|
with pd.do():
|
|
|
|
|
predict = model(pd.read_input(input), class_dim)
|
|
|
|
|
label = pd.read_input(label)
|
|
|
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
|
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
|
batch_acc = fluid.layers.accuracy(input=predict, label=label)
|
|
|
|
|
reader = val()
|
|
|
|
|
else:
|
|
|
|
|
if is_train:
|
|
|
|
|
reader = train(xmap=False)
|
|
|
|
|
else:
|
|
|
|
|
reader = val(xmap=False)
|
|
|
|
|
return model, reader, dshape, class_dim
|
|
|
|
|
|
|
|
|
|
pd.write_output(avg_cost)
|
|
|
|
|
pd.write_output(batch_acc)
|
|
|
|
|
|
|
|
|
|
avg_cost, batch_acc = pd()
|
|
|
|
|
avg_cost = fluid.layers.mean(avg_cost)
|
|
|
|
|
batch_acc = fluid.layers.mean(batch_acc)
|
|
|
|
|
def get_model(args, is_train, main_prog, startup_prog):
|
|
|
|
|
model, reader, dshape, class_dim = _model_reader_dshape_classdim(args,
|
|
|
|
|
is_train)
|
|
|
|
|
|
|
|
|
|
pyreader = None
|
|
|
|
|
trainer_count = int(os.getenv("PADDLE_TRAINERS"))
|
|
|
|
|
with fluid.program_guard(main_prog, startup_prog):
|
|
|
|
|
with fluid.unique_name.guard():
|
|
|
|
|
if args.use_reader_op:
|
|
|
|
|
pyreader = fluid.layers.py_reader(
|
|
|
|
|
capacity=args.batch_size * args.gpus,
|
|
|
|
|
shapes=([-1] + dshape, (-1, 1)),
|
|
|
|
|
dtypes=('float32', 'int64'),
|
|
|
|
|
name="train_reader" if is_train else "test_reader",
|
|
|
|
|
use_double_buffer=True)
|
|
|
|
|
input, label = fluid.layers.read_file(pyreader)
|
|
|
|
|
else:
|
|
|
|
|
predict = model(input, class_dim)
|
|
|
|
|
input = fluid.layers.data(
|
|
|
|
|
name='data', shape=dshape, dtype='float32')
|
|
|
|
|
label = fluid.layers.data(
|
|
|
|
|
name='label', shape=[1], dtype='int64')
|
|
|
|
|
|
|
|
|
|
predict = model(input, class_dim, is_train=is_train)
|
|
|
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
|
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
|
batch_acc = fluid.layers.accuracy(input=predict, label=label)
|
|
|
|
|
|
|
|
|
|
inference_program = fluid.default_main_program().clone()
|
|
|
|
|
with fluid.program_guard(inference_program):
|
|
|
|
|
inference_program = fluid.io.get_inference_program(
|
|
|
|
|
target_vars=[batch_acc])
|
|
|
|
|
|
|
|
|
|
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
|
|
|
|
|
batch_acc1 = fluid.layers.accuracy(input=predict, label=label, k=1)
|
|
|
|
|
batch_acc5 = fluid.layers.accuracy(input=predict, label=label, k=5)
|
|
|
|
|
|
|
|
|
|
batched_train_reader = paddle.batch(
|
|
|
|
|
train_reader if args.no_random else paddle.reader.shuffle(
|
|
|
|
|
train_reader, buf_size=5120),
|
|
|
|
|
# configure optimize
|
|
|
|
|
optimizer = None
|
|
|
|
|
if is_train:
|
|
|
|
|
if args.use_lars:
|
|
|
|
|
lars_decay = 1.0
|
|
|
|
|
else:
|
|
|
|
|
lars_decay = 0.0
|
|
|
|
|
|
|
|
|
|
total_images = 1281167 / trainer_count
|
|
|
|
|
|
|
|
|
|
step = int(total_images / args.batch_size + 1)
|
|
|
|
|
epochs = [30, 60, 80, 90]
|
|
|
|
|
bd = [step * e for e in epochs]
|
|
|
|
|
base_lr = args.learning_rate
|
|
|
|
|
lr = []
|
|
|
|
|
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
|
|
|
|
|
optimizer = fluid.optimizer.Momentum(
|
|
|
|
|
learning_rate=base_lr,
|
|
|
|
|
#learning_rate=fluid.layers.piecewise_decay(
|
|
|
|
|
# boundaries=bd, values=lr),
|
|
|
|
|
momentum=0.9,
|
|
|
|
|
regularization=fluid.regularizer.L2Decay(1e-4))
|
|
|
|
|
optimizer.minimize(avg_cost)
|
|
|
|
|
|
|
|
|
|
if args.memory_optimize:
|
|
|
|
|
fluid.memory_optimize(main_prog)
|
|
|
|
|
|
|
|
|
|
# config readers
|
|
|
|
|
if not args.use_reader_op:
|
|
|
|
|
batched_reader = paddle.batch(
|
|
|
|
|
reader if args.no_random else paddle.reader.shuffle(
|
|
|
|
|
reader, buf_size=5120),
|
|
|
|
|
batch_size=args.batch_size * args.gpus,
|
|
|
|
|
drop_last=True)
|
|
|
|
|
batched_test_reader = paddle.batch(
|
|
|
|
|
test_reader, batch_size=args.batch_size, drop_last=True)
|
|
|
|
|
|
|
|
|
|
return avg_cost, inference_program, optimizer, batched_train_reader,\
|
|
|
|
|
batched_test_reader, batch_acc
|
|
|
|
|
else:
|
|
|
|
|
batched_reader = None
|
|
|
|
|
pyreader.decorate_paddle_reader(
|
|
|
|
|
paddle.batch(
|
|
|
|
|
reader if args.no_random else paddle.reader.shuffle(
|
|
|
|
|
reader, buf_size=5120),
|
|
|
|
|
batch_size=args.batch_size))
|
|
|
|
|
|
|
|
|
|
return avg_cost, optimizer, [batch_acc1,
|
|
|
|
|
batch_acc5], batched_reader, pyreader
|
|
|
|
|