【paddle.fleet】Meta from optimizer (#26392)
* consider the combination of different strategies to work togethertest_feature_precision_test_c
parent
bdac6bc880
commit
83cd185947
@ -0,0 +1,58 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import paddle
|
||||
from paddle import fluid
|
||||
import os
|
||||
import paddle.distributed.fleet as fleet
|
||||
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
||||
from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import MetaOptimizerBase
|
||||
|
||||
|
||||
class TestFleetMetaOptimizerBase(unittest.TestCase):
|
||||
def net(main_prog, startup_prog):
|
||||
with fluid.program_guard(main_prog, startup_prog):
|
||||
with fluid.unique_name.guard():
|
||||
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
fleet.init(role)
|
||||
input_x = paddle.fluid.layers.data(
|
||||
name="x", shape=[32], dtype='float32')
|
||||
input_y = paddle.fluid.layers.data(
|
||||
name="y", shape=[1], dtype='int64')
|
||||
|
||||
fc_1 = paddle.fluid.layers.fc(input=input_x,
|
||||
size=64,
|
||||
act='tanh')
|
||||
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=256, act='tanh')
|
||||
prediction = paddle.fluid.layers.fc(input=[fc_2],
|
||||
size=2,
|
||||
act='softmax')
|
||||
cost = paddle.fluid.layers.cross_entropy(
|
||||
input=prediction, label=input_y)
|
||||
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||
|
||||
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
|
||||
opt = MetaOptimizerBase(optimizer)
|
||||
opt_ops, params_grads = opt.minimize(avg_cost)
|
||||
opt.apply_optimize(avg_cost,
|
||||
paddle.static.default_startup_program(),
|
||||
params_grads)
|
||||
return None
|
||||
|
||||
net(fluid.default_startup_program(), fluid.default_main_program())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue