parent
2200ff5e3c
commit
84660653f8
@ -0,0 +1,99 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "Layer.h"
|
||||||
|
#include "paddle/math/Matrix.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A layer for L2 normalization in each row,
|
||||||
|
* \f[
|
||||||
|
* out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}
|
||||||
|
* \f]
|
||||||
|
* where the size of \f$in\f$ is (batchSize x dataDim),
|
||||||
|
* and the size of \f$out\f$ is (batchSize x dataDim).
|
||||||
|
*/
|
||||||
|
|
||||||
|
class RowL2NormLayer : public Layer {
|
||||||
|
protected:
|
||||||
|
MatrixPtr inSquare_;
|
||||||
|
MatrixPtr reciSqrtRowSquareSum_;
|
||||||
|
MatrixPtr dotSum_;
|
||||||
|
|
||||||
|
public:
|
||||||
|
explicit RowL2NormLayer(const LayerConfig& config) : Layer(config) {}
|
||||||
|
|
||||||
|
bool init(const LayerMap& layerMap,
|
||||||
|
const ParameterMap& parameterMap) override;
|
||||||
|
|
||||||
|
void forward(PassType passType) override;
|
||||||
|
void backward(const UpdateCallback& callback = nullptr) override;
|
||||||
|
};
|
||||||
|
|
||||||
|
REGISTER_LAYER(row_l2_norm, RowL2NormLayer);
|
||||||
|
|
||||||
|
bool RowL2NormLayer::init(const LayerMap& layerMap,
|
||||||
|
const ParameterMap& parameterMap) {
|
||||||
|
Layer::init(layerMap, parameterMap);
|
||||||
|
|
||||||
|
CHECK_EQ(inputLayers_.size(), 1U);
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void RowL2NormLayer::forward(PassType passType) {
|
||||||
|
Layer::forward(passType);
|
||||||
|
|
||||||
|
MatrixPtr inV = getInputValue(0);
|
||||||
|
|
||||||
|
/* malloc memory for the output_ if necessary */
|
||||||
|
size_t batchSize = inV->getHeight();
|
||||||
|
size_t dataDim = getSize();
|
||||||
|
CHECK_EQ(dataDim, inV->getWidth());
|
||||||
|
resetOutput(batchSize, dataDim);
|
||||||
|
MatrixPtr outV = getOutputValue();
|
||||||
|
|
||||||
|
Matrix::resizeOrCreate(inSquare_, batchSize, dataDim, false, useGpu_);
|
||||||
|
inV->square2(*inSquare_);
|
||||||
|
Matrix::resizeOrCreate(reciSqrtRowSquareSum_, batchSize, 1, false, useGpu_);
|
||||||
|
inSquare_->rowSum(*reciSqrtRowSquareSum_);
|
||||||
|
reciSqrtRowSquareSum_->sqrt2(*reciSqrtRowSquareSum_);
|
||||||
|
reciSqrtRowSquareSum_->scalarDiv(*reciSqrtRowSquareSum_, 1.0);
|
||||||
|
outV->rowScale(0, *inV, *reciSqrtRowSquareSum_);
|
||||||
|
}
|
||||||
|
|
||||||
|
void RowL2NormLayer::backward(const UpdateCallback& callback) {
|
||||||
|
MatrixPtr inV = getInputValue(0);
|
||||||
|
MatrixPtr inG = getInputGrad(0);
|
||||||
|
MatrixPtr outV = getOutputValue();
|
||||||
|
MatrixPtr outG = getOutputGrad();
|
||||||
|
size_t batchSize = inV->getHeight();
|
||||||
|
|
||||||
|
// inG[ij] += outG[ij] / reciSqrtRowSquareSum
|
||||||
|
// inG[ij] += -inV[ij] * reciSqrtRowSquareSum * reciSqrtRowSquareSum *
|
||||||
|
// DotMul(outG[i], inV[i])
|
||||||
|
if (inG) {
|
||||||
|
Matrix::resizeOrCreate(dotSum_, batchSize, 1, false, useGpu_);
|
||||||
|
dotSum_->zeroMem();
|
||||||
|
dotSum_->rowDotMul(0, *outG, *outV);
|
||||||
|
dotSum_->dotMul(*dotSum_, *reciSqrtRowSquareSum_);
|
||||||
|
dotSum_->dotMul(*dotSum_, *reciSqrtRowSquareSum_);
|
||||||
|
inSquare_->rowScale(0, *inV, *dotSum_);
|
||||||
|
inG->sub(*inSquare_);
|
||||||
|
inG->addRowScale(0, *outG, *reciSqrtRowSquareSum_);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace paddle
|
Loading…
Reference in new issue